Control of Lithium Ion Batteries (switching regulator secondary) (two cells) Monolithic IC MM1357

Outline

This IC is used to control two-cell chargers and the secondary side of switching regulators; it features enhanced functions for current switching and for overcharge detection and other kinds of protection. The control output is capable of driving a photocoupler LED. The charging current can be switched between high and low currents, and each can also be varied externally.

Features

- 1. Charging voltage
- 2. Charging current (switchable between high and low levels, variable)
- 3. Reference voltage

Package

SOP-14B

Applications

- 1. Switching regulator
- 2. AC adapter
- 3. Lithium ion battery charger

: Can be set externally High : 320mV typ. Low : 145mV typ. : 1.207V typ.

Block Diagram

Pin Assignment

1	OUT	8	CC OUT
2	CFB	9	S-GND
3	CSR	10	VFB+
4	CC IN	11	Vcc
5	ADJ1	12	REG OUT
6	P-GND	13	VREF
7	ADJ2	14	VFB-

Pin Description

Pin no.	Pin name	Input/output	Function	
1	1 OUT Output		Output pin for charging control	
			An external photocoupler is controlled for constant-current, constant-voltage charging control.	
2 CFB		Innut	Amp inverting input pin for current control	
		mput	All external capacitor (approx. 0.1 μ r) is connected between Cr B and OO1, and phase componentian used to improve escillation	
			Current detection pin	
3 CSR	CSR	Input	Current is detected via the voltage drop across an external resistance between	
		mput	CSR and GND (R1), to control the charging current.	
			Charging current switching signal input pin	
	66 P.		H (Vcc) is the charging current 0.15V/R1, and L (GND) is the charging current	
		Ŧ,	0.32 V/R1. If for instance R1 is 0.1 Ω , then switching is between 1.5A and 3.2A (typ.).	
4	CCIN	Input	The switching voltage VIH is as follows.	
			When REG OUT is 2.5V, VTH is 2.05V typ.	
			When RFG OUT is $5V$ VTH is 3.7V typ.	
			Amp non-inverting input pin 1 for current control	
			The pin voltage is set at 0.15V typ. With CC-IN at H or open, the non-inverting input	
5	ADJ1	Input	pin of the current control amp is at 0.15 V.	
			By adjusting the pin voltage using an external resistance or by other means, the	
			charging current can be varied.	
6	P-GND	Input	Power ground pin	
			Amp non-inverting input pin 2 for current control	
7	ADJ2	Input	The pin voltage is set at 0.32V typ. With CC-IN at L, the non-inverting input pin of the	
			current control amp is at 0.32V.	
			By adjusting the pin voltage using an external resistance or by other means, the	
			Charging current switching signal output pip	
			Output is in phase with CC IN. By connecting an external capacitor between CC OUT	
8	CC OUT	Output	and REG OUT, a delay can be added only when the current switching CC IN goes	
			from H to L. For instance, when REG OUT is 4V, on connecting an 0.1µF capacitor	
			CC OUT becomes about 50mS (an example is shown in the Timing Chart section).	
9	S-GND	Input	Signal ground pin	
10	VED	Turnet	Amp non-inverting input pin for voltage control	
10	VFD+	Input	The charging voltage is set through the resistances at the VFB + pin and the VFB – pin.	
11	Vcc	Input	Power supply input pin	
			Reference voltage circuit output pin	
12	REG OUT	Output	The reference voltage can be set between 2 and 6V. The input current to start the	
			reference voltage should be set to 1mA or greater.	
	VREF	Input	Keterence voltage circuit input pin	
13			The VREF pin voltage is set at 1.2V typ. The REG OUT voltage can be set through the	
			Amp inverter input pin for voltage control	
			Amp inverter input pin for voltage control	
	VFB-	VFB- Input	The charging voltage can be set through the resistances at the VFR + nin and VFR – nin	
14			By connecting an external capacitor (approx. 0.1µF) between VFB and OUT for phase	
			compensation, oscillation can be improved.	

Absolute Maximun Ratings

Item	Symbol Ratings		Units	
Storage temperature	Tstg	-40~+125	°C	
Operating temperature	Topr	-20~+85	°C	
Power supply voltage	Vcc max.	-0.3~+24	V	
Allowable loss	PD	350	mW	

Recommended Operating Conditions

Item	Symbol	Ratings	Units	
Operating temperature	Topr	-15~+80	°C	
Operating voltage	Vopr	+2~+20 *	V	

*The minimum operating voltage is under constant-current control

Electrical Characteristics (Except where noted otherwise, Ta=25°C, REG OUT=4V, Vcc=8.4V)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Vcc minimum input current	Icc	Excluding REG OUT input current		0.25	0.40	mA
Amp input for voltage control						
Input offset voltage	Vio			1	5	mV
Input bias current VFB+	I _{B+}			20	250	nA
Input bias current VFB-	IB-			20	250	nA
Common-mode input voltage range	VI	*	0.7		REG OUT -0.7	V
Amp input for current control						
ADJ1 pin input impedance	Radj1			13		kΩ
ADJ2 pin input impedance	Radj2			13		kΩ
CFB pin input impedance	RCFB			2		kΩ
Current limit 1	Vcl1	High-current mode	310	320	330	mV
Current limit 2	VCL2	Low-current mode	137	145	153	mV
OUT pin input current 1	Is1	OUT=8.4V (voltage-control amp)	20			mA
OUT pin input current 2	Is2	OUT=4 V (voltage-control amp)	20			mA
OUT pin leakage current	IL	OUT=24V		2		μA
CC IN input impedance	Rci			100		kΩ
CC switching voltage L (VTR mode)	Vcl				2.6	V
CC switching voltage H (CHG mode)	VCH		3.4			V
CC OUT output intake current	Ico1	On switching from low to high current mode		6		μA
CC OUT output current	Ico2	On switching from high to low current mode		0.5		mA
CC OUT output voltage range	Vco		0.4		3.6	V
Reference voltage	VREF		1.195	1.207	1.219	V
REG OUT output voltage variable range	VREG		2.0		6.0	V
REG OUT maximum input current	I max.		20			mA
REG OUT minimum input current	I min.				1.0	mA

*Because there is an internal circuit for protection against shorts of external components, the common-mode input voltage range is 0.7V to REG OUT-0.7V. Values are set such that overvoltages do not occur when there is a short between VBF+ and REG OUT or between VFB- and GND.

Timing Chart

Timing chart for connection of a timing capacitor C_T to CC OUT With REG OUT at 4V and $C_T=0.1\mu$ F, TD is approx. 50mS.

Application Circuits

- Note 1 : 1. The REG OUT voltage can be set to 1.2V typ. \times (R5+R6)/R6. (REG OUT = 2 to 6V)
 - 2. The value of R4 should be set according to the load. (Consider it to be a shunt regulator.)
 - 3. The voltage under constant-voltage charging is equal to (R3/R2) × REG OUT. When a highprecision voltage is required, use the knob for adjustment.
 - 4. The current in constant-current charging can be set to either of two values, 0.15V/R1 (when CC-IN is H), and 0.32V/R1 (when CC-IN is L).
 - 5. R7 is a resistance for current limiting.
 - 6. The capacitors C1 and C5 are to prevent oscillation; C4 is for soft starting of the REG OUT voltage; and C2 is used to delay current switching (CC-OUT switched from H to L).
- Note 2 : This IC incorporates a voltage-controlling amp and protection against shorting to VREF ; when R2, R3, R5 and R6 are shorted, the voltage is limited to its minimum value. By means of a comparator within the VFB+, VFB– and VREF pin area, upon resistance shorting the OUT pin is forced to L.
- Note 3 : The above diagram is an example for reference purposes; in actual use the circuit should be studied thoroughly prior to use.

Characteristics

Current limit 1 vs temperature

Current limit 2 vs temperature

Reference voltage vs temperature

REG OUT voltage (4V) – temperature

CC switching voltage vs REG OUT voltage

CC OUT intake current vs temperature

