IC for System Reset (with built-in watchdog timer)

Monolithic IC MM1136

March 27, 2000

Outline

These ICs were developed to drive low voltage batteries, and have a watchdog timer with built-in microcomputer reset voltage detection circuit and low battery detection circuit.

A single reference voltage is used for low battery voltage detection and microcomputer reset voltage detection, so detection voltage difference is uniform (= 0.2V). Further, there is a built-in watchdog timer for operation diagnosis, which prevents the system from running wild by generating an intermittent reset pulse during system mis-operation.

Features

1. Accurate voltage drop detection voltage

Low battery detection
Power supply voltage detection
3.4V±3%
2. Power supply voltage detection

3. Detection voltage error 0.2V±20mV 1-2

4. Hysteresis Both 50mV typ.

2. Watchdog function stop pin (can be made to function only as reset IC during Vcc rise)

3. Low current consumption 150µA typ.

Package

SOP-8C (MM1136XF)

Applications

- 1. 3V cordless telephones
- 2. Various types of small, handy equipment

Series Table

Model	V SLB	V SLR	Tpr	Two	Twr
MM1136	3.4V	3.2V	100ms	100ms	2ms

*C_T=0.02uF

TPR: Reset hold time during Vcc rise

Two: Timer monitoring time

Twn: Reset time

Vslb: Battery check detection voltage

V_{SLR}: Reset detection voltage

Pin Assignment

1	TC
2	BC (RESET)
3	CK
4	GND
5	Vcc
6	RCT
7	Vs
8	RESET

Pin Description

Pin No.	Pin name	Function
1	TC	Twd, Twr, Tpr time setting pins.
2	BC (RESET)	Battery check output pin (RESET low level output) for 3.4V
3	CK	Clock input pin
4	GND	GND pin
5	Vcc	Power supply voltage input pin
6	RCT	Watchdog timer stop pin
0	KC1	Operation → OPEN, Stop → connect to GND
7	Vs	Detection voltage fine adjustment pin
8	RESET	Reset output pin (low output)

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Rating	Units
Power supply voltage	Vcc max.	-0.3~+7	V
Voltage applied to input pin	Vin	-0.3~Vcc+0.3 (≤ +7)	V
Voltage applied to output pin	Vout	-0.3~Vcc+0.3 (≤ +7)	V
Allowable loss	Pd	450	mW
Storage temperature	Tstg	-40~+125	$^{\circ}$ C

Recommended Operating Conditions

Item	Symbol	Rating	Units
Power supply voltage	Vcc	+2.5~+6.5	V
RESET sync current	Iolr	0~1.5	mA
BC sync current	Iolc	0~1.5	mA
Clock input high level voltage	Vckh	1.4<	V
Clock input low level voltage	Vckl	<0.4	V
Clock monitoring time setting	Twd	1~1000	ms
Clock rise and fall times	trck, tfck	<100	μs
Power supply voltage rise times	trvcc	100<	μs
Power supply voltage fall times	trvcc	50<	μs
TC pin capacitance	Ст	0.002~2	μF
Operating temperature	Тор	-25~+75	°C

Electrical Characteristics

(Except where noted otherwise, Ta=25°C, Vcc=3.8V) (Except where noted otherwise, resistance unit is Ω)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Consumption current	Icc	No load		200	280	μA
RESET detection voltage	Vslr	Vcc : High→Low RCT : GND, Vrc=OPEN	3.10	3.20	3.30	V
Detection voltage temperature coefficient R	$\frac{\triangle V_{SR}}{\triangle T}$			±0.01	±0.05	%/°C
Hysteresis voltage R	VHYSR	Vcc : Low→High RCT : GND, VTC=OPEN	25	50	100	mV
BC detection voltage	V _{SLB}	Vcc : High→Low, R _{LB} =10k	3.30	3.40	3.50	V
Detection voltage	∠VsB			±0.01	±0.05	%/°C
temperature coefficient B	$\overline{\Box T}$			±0.01	±0.03	%/ C
Hysteresis voltage B	VHYSB	Vcc: Low→ High, R _{LB} =10k	25	50	100	mV
Detection voltage difference	∠Vsl	∠Vsl=Vslb-Vslr	0.18	0.20	0.22	V
CK input threshold	V_{TH}		0.8	1.2	2	V
CK input current	Iтн	Vck=3.8V		0	1	μA
ok input current	IIL	Vck=0.0V	-15	-6	-2	μπ
Output voltage RH	Vohr	Ireset=-5µA	3.0	3.4		V
Output voltage BH	Vohb	R _{LB} =10k	3.2	3.6		V
Output voltage RL	Volr	IRESET=1mA, Vcc=3.0V		0.3	0.5	V
Output voltage BL	Volb	IBC=5mA, VCC=3.0V		0.3	0.5	V
Output sync current R	Iolr	Vreset=0.5V, Vcc=3.0V	1	2		mA
Output sync current B	Iolb	V _{BC} =0.5V, V _{CC} =3.0V	5	10		mA
Output source current R	Iohr	Vreset=3.4V	8	15		μA
C shawers surveyed	Іст1	V _{TC} =1.0V during watchdog timer operation	-0.48	-0.24	-0.16	μA
C _T charge current	Іст2	V _{TC} =1.0V during power ON reset operation	-0.48	-0.24	-0.16	μA
Minimum operating power supply voltage to ensure RESET	Vcc	Vreset=0.4V Ireset=0.1mA		0.8	1.0	V

Vcc input pulse width	Ты	Vcc 3.8V	8			μs
CK input pulse width	Тскw	CK TCKW or	3			μs
CK input cycle	Тск	СК	20			μs
Watchdog timer monitoring time *1	Twd	C _T =0.02μF	50	100	150	ms
Watchdog timer reset time *2	Twr	Ст=0.02µF	1	2	3	ms
Reset hold time for power supply rise *3	TPR	Ст=0.02µF	50	100	150	ms
RESET delay time	t pdr	Vcc : High →Low, Rlr=10k, Clr=15pF		10		μs
BC delay time	t PDB	Vcc : High→Low, R _{LB} =4.7k, C _{LB} =15pF		10		μs
RESET rise time	trr	Rlr=10k, Clr=15pF		10		μs
RESET fall time	tfr	Rlr=10k, Clr=15pF		2		μs
BC rise time	trв	Rlb=4.7k, Clb=15pF		10		μs
BC fall time	t fB	Rlb=4.7k, Clb=15pF		2		μs

Notes:

- *1 Monitoring time is the time from the last pulse (negative edge) of the timer clear clock pulse until reset pulse output.
 - In other words, reset output is output if a clock pulse is not input during this time.
- *2 Reset time means reset pulse width. However, this does not apply to power ON reset.
- *3 Reset hold time is the time from when Vcc exceeds detection voltage (Vshr) during power ON reset until reset release (RESET output high).
- *4 Watchdog timer monitoring time (TwD), watchdog timer reset time (TwR) and reset hold time (TPR) during power supply rise can be changed by varying C⊤ capacitance. The times are expressed by the following formulae.

Tpr (ms) $= 5000 \times C_T (\mu F)$

Two (ms) $= 5000 \times C_T (\mu F)$

Twr (ms) $= 100 \times C_T (\mu F)$

Example: When C_T=0.02µF

T_{PR} ≒ 100ms

Two ≒ 100ms

Twr ≒ 2ms

- *5 Twp can be varied by placing a resistor (1MEGΩ or more) between the RCT pin and Vcc.
- *6 The voltage range when measuring output rise and fall time is 10~90%.
- *7 Vcc rise time should be 100µs or more, and fall time should be 50µs or more.

Measuring Circuit

Timing Chart

Basic Circuit Diagram

