

810 nm - 70 MHz High Performance LED

Data Sheet

October 2004

Features

- 810 nm Surface-Emitting LED
- · 70 MHz Bandwidth
- Designed for 200/280 µm fiber

Applications

- Avionics
- Sensors
- · Military LANs

Ordering Information

MF272 TO-46 Package
MF272 ST ST Housing
MF272 SMA SMA Housing
MF272 FC FC Housing

-55°C to +125°C

Note: Rated Fiber coupled power apply only on the TO-46 package, for housing options fiber coupled power is typically 10% less

Description

This high speed device is optimized at 810 nm wavelength which is of particular interest for use in radiation-hardened fiber. It operates in a wide temperature range and delivers very high power to 200 µm core fiber, making it ideal in avionics and military datacom applications.

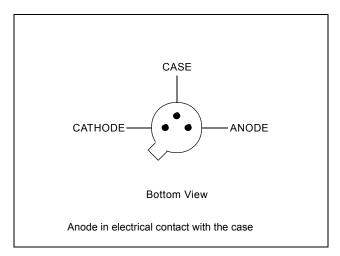


Figure 1 - Pin Diagram

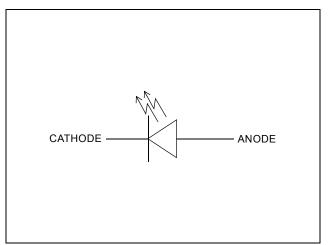


Figure 2 - Functional Schematic

Optical and Electrical Characteristics - Case Temperature 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	
Fiber-Coupled Power (Figures 3, 4, and 5) (Table 1)	P _{fiber}	1300	1600		μW	I _F = 100 mA (Note 1)	Fiber:
Rise and Fall Time (10-90%)	t _r ,t _f		7	10	ns	I _F = 100 mA (no bias)	200/280 μm Step
Bandwidth (3 dB _{el})	f _c		70		MHz	I _F = 100 mA	Index
Peak Wavelength	λ_{p}	790	810	830	nm	I _F = 100 mA	
Spectral Width (FWHM)	Δλ		50		nm	I _F = 100 mA	
Forward Voltage (Figure 7)	V _F		2.2	2.4	V	I _F = 100 mA	
Reverse Current	I _R			20	μΑ	V _R = 1 V	
Capacitance	С		250		pF	V _R -0V, f = 1 M	Hz

Note 1: Measured at the exit of 100 meters of fiber.

Absolute Maximum Ratings

Parameter	Symbol	Limit
Storage Temperature	T _{stg}	-55 to +125°C
Operating Temperature (derating: Figure 6)	T _{op}	-55 to +125°C
Electrical Power Dissipation (derating: Figure 6)	P _{tot}	250 mW
Continuous Forward Current (f<10 kHz)	I _F	110 mA
Peak Forward Current (duty cycle<50%,f>1 MHz	I _{FRM}	180 mA
Reverse Voltage	V_{R}	1.5 V
Soldering Temperature (2 mm from the case for 10 sec.)	T_{sld}	260°C

Thermal Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Thermal Resistance - Infinite Heat Sink	R _{thjc}			100	°C/W
Thermal Resistance - No Heat Sink	R _{thja}			400	°C/W
Temperature Coefficient - Optical Power	d <i>P</i> /d <i>T</i> _j		-0.4		%/°C
Temperature Coefficient - Wavelength	$\mathrm{d}\lambda/\mathrm{d}T_{\mathrm{j}}$		0.3		nm/°C

Typical Fiber-Coupled Power

Core				
50/125 μm 0.20	62.5/125 μm 0.275	100/140 μm 0.29	200/230 μm 0.37	200/280 μm 0.24
60 μW	150 μW	600 μW	2000 μW	1600 μW

MF272 Data Sheet

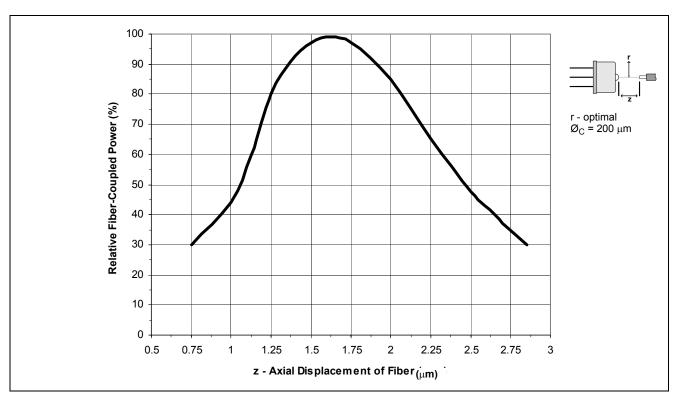


Figure 3 - Relative Fiber-coupled Power vs. z - Axial Displacement of Fiber

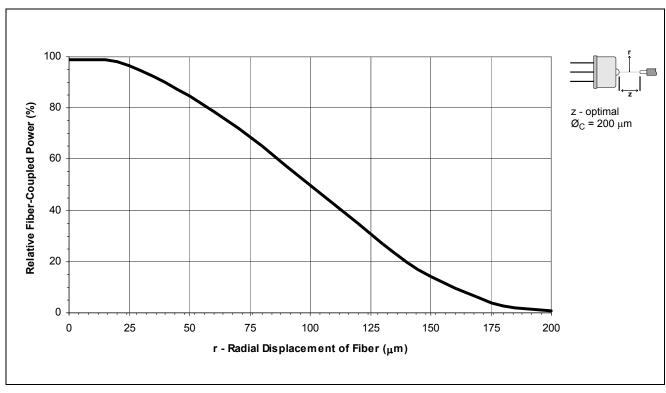


Figure 4 - Relative Fiber-Coupled Power vs. r - Radial Displacement of Fiber

MF272 Data Sheet

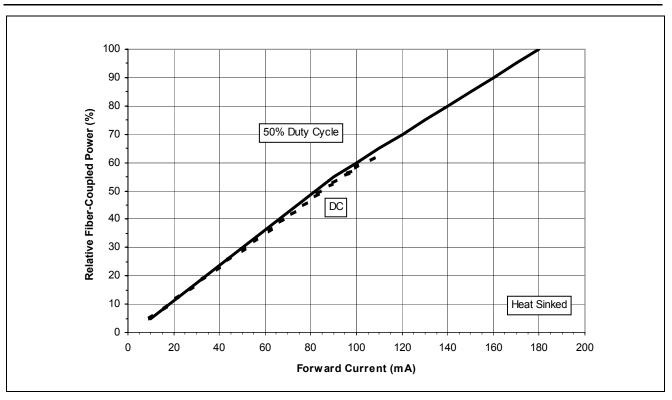


Figure 5 - Relative Fiber-coupled Power vs. Forward Current

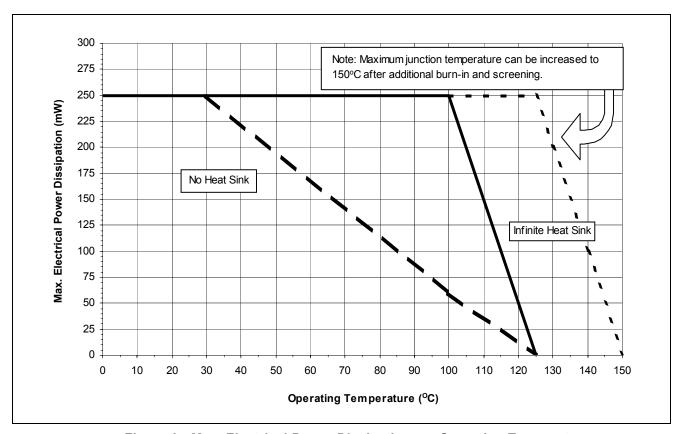


Figure 6 - Max. Electrical Power Dissipation vs. Operating Temperature

MF272 Data Sheet

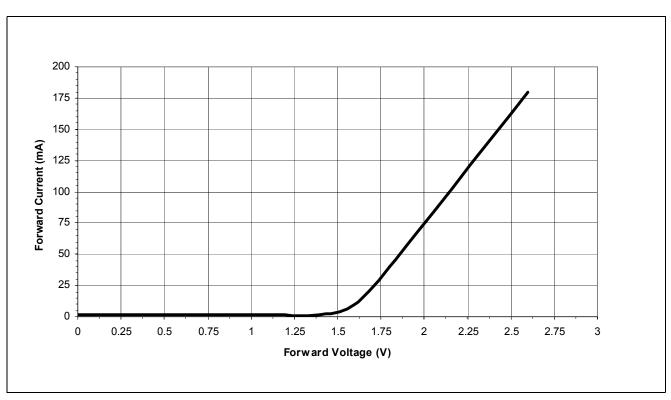


Figure 7 - Forward Current vs. Forward Voltage

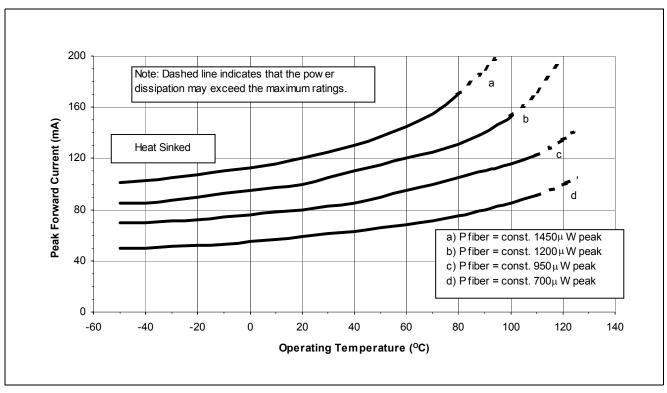


Figure 8 - Peak Forward Current vs. Operating Temperature

For more information about all Zarlink products visit our Web Site at www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE