

Low Noise Dual Operational Amplifier

■ Low voltage noise: 4.5nV/√Hz

■ High gain bandwidth product: 15MHz

■ High slew rate: 7V/µs■ Low distortion: 0.002%

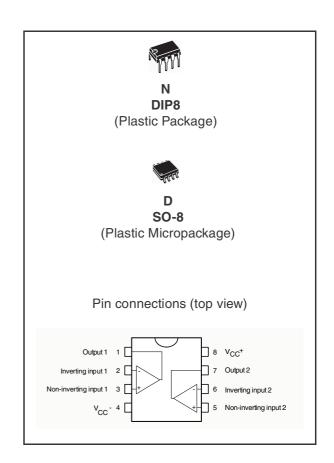
■ Large output voltage swing: +14.3V / -14.6V

■ Low input offset voltage

■ Excellent frequency stability

■ ESD protection 2kV

■ Macromodel included in this specification


Description

The MC33078 is a monolithic dual operational amplifier particularly well suited for audio applications.

It offers low voltage noise (4.5nV/ $\sqrt{\text{Hz}}$) and high frequency performances (15MHz gain bandwidth product, 7V/ μ s slew rate).

In addition, the MC33078 has a very low distortion (0.002%) and excellent phase/gain margins.

The output stage allows a large output voltage swing and symmetrical source and sink currents.

Order Codes

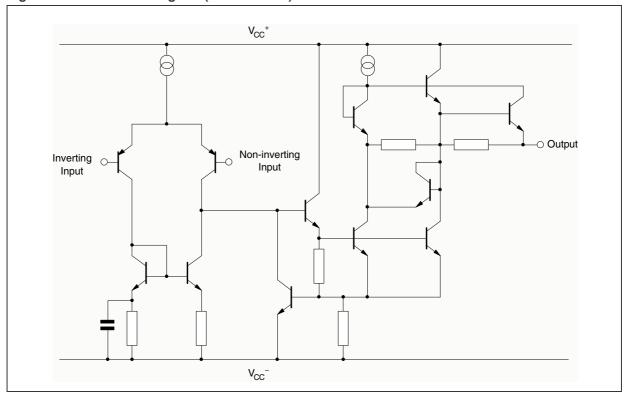
Part Number	Temperature Range	Package	Packing	Marking	
MC33078N		DIP8	Tube	MC33078N	
MC33078D/DT	-40, +105°C	SO-8	Tube or Tape & Reel	33078	
MC33078YD/YDT		SO-8 (automotive grade level)	Tube of Tape & Neel	33078Y	

1 Absolute Maximum Ratings

Table 1. Key parameters and their absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	±18 or +36	V
V _{id}	Differential Input Voltage - note (1)	±30	V
Vi	Input Voltage - see note 1	±15	V
	Output Short Circuit Duration	Infinite	S
T _{oper}	Operating Free-Air Temperature Range	-40 to 105	°C
Тј	Junction Temperature	+150	°C
T _{stg}	Storage Temperature	-65 to +150	°C
P _{tot}	Maximum Power Dissipation - note (2)	500	mW

^{1.} Either or both input voltages must not exceed the magnitude of V_{CC}^+ or V_{CC}^- .


Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	±2.5 to ±15	V

^{2.} Power dissipation must be considered to ensure maximum junction temperature (T_i) is not exceeded.

2 Typical Application Schematic

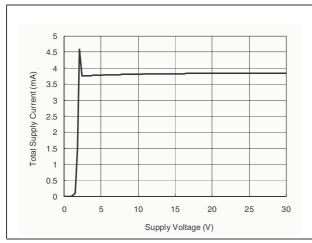
Figure 1. Schematic diagram (1/2 MC33078)

Electrical Characteristics MC33078

3 Electrical Characteristics

Table 3. $V_{CC}^+ = +15V$, $V_{CC}^- = -15V$, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage ($V_0 = 0V$, $V_{ic} = 0V$) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		0.15	2 3	mV
DV _{io}	Input Offset Voltage Drift $V_o = 0V, \ V_{ic} = 0V, \ T_{min}. \le T_{amb} \le T_{max}.$		2		μV/°C
I _{io}	Input Offset Current ($V_0 = 0V$, $V_{ic} = 0V$) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		10	150 175	nA
I _{ib}	Input Bias Current ($V_o = 0V$, $V_{ic} = 0V$) $T_{amb} = +25^{\circ}C$ $T_{min.} \le T_{amb} \le T_{max.}$		250	750 800	nA
V _{icm}	Input Common Mode Voltage Range (ΔV _{io} = 5mV, V _o = 0V)	±13	±14		V
A _{vd}	Large Signal Voltage Gain (R _L = $2k\Omega$, V _o = $\pm 10V$) T_{amb} = $+25^{\circ}C$ T_{min} . $\leq T_{amb} \leq T_{max}$.	90 85	100		dB
±V _{opp}	Output Voltage Swing (V_{id} = ±1V) $R_L = 600\Omega$ $R_L = 600\Omega$ $R_L = 2.0k\Omega$ $R_L = 2.0k\Omega$ $R_L = 10k\Omega$ $R_L = 10k\Omega$ $R_L = 10k\Omega$	13.2	12.2 -12.7 14 -14.2 14.3 -14.6	-13.2 -14	V
CMR	Common-mode Rejection Ratio (V _{ic} = ±13V)	80	100		dB
SVR	Supply Voltage Rejection Ratio $V_{CC}^+/V_{CC}^- = +15V/-15V$ to $+5V/-5V$	80	105		dB
I _o	Output Short Circuit Current ($V_{id} = \pm 1V$, Output to Ground) Source Sink	15 20	29 27		mA
I _{CC}	Supply Current ($V_o = 0V$, All amplifiers) $T_{amb} = +25$ °C $T_{min} \le T_{amb} \le T_{max}$.		4	5 5.5	mA
SR	Slew Rate $V_i = -10V$ to $+10V$, $R_L = 2k\Omega$, $C_L = 100pF$, $A_V = +1$	5	7		V/µs
GBP	Gain Bandwidth Product $R_L = 2k\Omega$, $C_L = 100pF$, $f = 100kHz$	10	15		MHz
В	Unity Gain Bandwidth (Open loop)		9		MHz
A _m	Gain Margin (R _L = $2k\Omega$), C _L = $0pF$ C _L = $100pF$		-11 -6		dB
φm	Phase Margin ($R_L = 2k\Omega$), $C_L = 0pF$ $C_L = 100pF$		55 30		Degrees


Table 3. $V_{CC}^+ = +15V$, $V_{CC}^- = -15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter		Тур.	Max.	Unit
e _n	Equivalent Input Noise Voltage $R_S = 100\Omega$, $f = 1kHz$		4.5		nV/√Hz
i _n	Equivalent Input Noise Current (f = 1kHz)		0.5		pA/√Hz
THD	Total Harmonic Distortion $R_L = 2k\Omega$, $f = 20Hz$ to $20kHz$, $V_0 = 3V_{rms}$, $A_V = +1$		0.002		%
V _{O1} /V _{O2}	Channel Separation f = 20Hz to 20kHz		120		dB
FPB	Full Power Bandwidth $V_o = 27V_{pp}, R_L = 2k\Omega, THD \le 1\%$		120		kHz
Z _o	Output Impedance V _o = 0V, f = 9MHz		37		Ω
R _i	Input Resistance $V_{ic} = 0V$		175		kΩ
C _i	Input Capacitance $V_{ic} = 0V$		12		pF

Electrical Characteristics MC33078

Figure 2. Total supply current vs. supply voltage

Figure 3. Output voltage vs. supply voltage

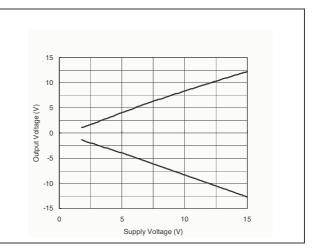
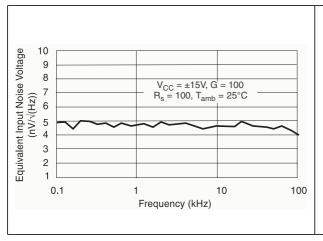



Figure 4. Equivalent input noise voltage vs. frequency

Figure 5. Output short circuit current vs. output voltage

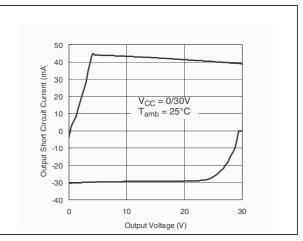
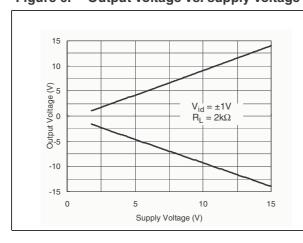



Figure 6. Output voltage vs. supply voltage

Figure 7. THD + Noise vs. frequency

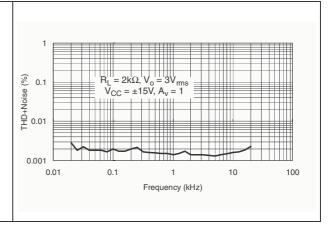
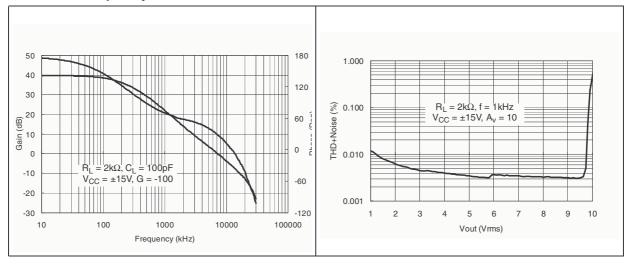



Figure 8. Voltage gain and phase vs. frequency

Figure 9. THD noise vs. V_{out}

Macromodels MC33078

4 Macromodels

4.1 Important note concerning this macromodel

Please consider following remarks before using this macromodel.

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product.
- Data issued from macromodels used outside of its specified conditions (V_{CC}, Temperature, etc.) or even worse: outside of the device operating conditions (V_{CC}, V_{icm}, etc.) are not reliable in any way.

In Section 4.2, the electrical characteristics resulting from the use of this macromodel are presented.

4.2 Electrical characteristics from macromodelization

Table 4. Electrical characteristics resulting from macromodel simulation at $V_{CC}^+ = +15V$, $V_{CC}^- = -15V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Conditions	Value	Unit	
V _{io}		0	mV	
A _{VD}	$R_L = 2k\Omega, V_O = \pm 10V$	100	dB	
I _{CC}	No load, per operator	2	mA	
V _{icm}	$\Delta V_{io} = 5 \text{mV}, V_O = 0 \text{V}$	28 V		
V _{opp}	$R_L = 2k\Omega$	28.2	V	
I _{sink}	$V_O = 0V$	37	mA	
I _{source}	$V_O = 0V$	OV 29		
GBP	$R_L = 2k\Omega$, $C_L = 100pF$	15	15 MHz	
SR	$R_L = 10k\Omega$, $C_L = 100pF$, $A_V = +1$	7	V/μs	
φm	$R_L = 2k\Omega$, $C_L = 0pF$	55	Degrees	

MC33078 Macromodels

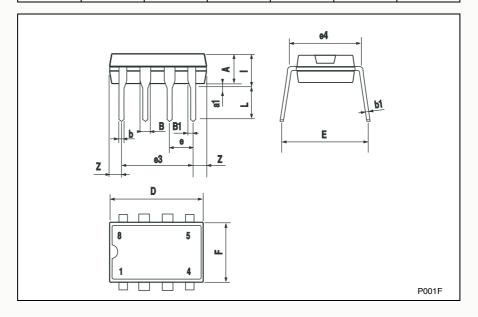
4.3 Macromodel code

```
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT MC33078 1 3 2 4 5 (analog)
************
.MODEL MDTH D IS=1E-8 KF=2.286238E-16 CJO=10F
* INPUT STAGE
CIP 2 5 1.200000E-11
CIN 1 5 1.200000E-11
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.363636E+00
RIN 15 16 2.363636E+00
RIS 11 15 1.224040E+01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.100000E-04
CPS 11 15 2.35E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 1.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.00000E+00
FCP 4 5 VOFP 1.718182E+01
FCN 5 4 VOFN 1.718182E+01
FIBP 2 5 VOFN 4.545455E-03
FIBN 5 1 VOFP 4.545455E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 9.545455E+02
FIN 5 19 VOFN 9.545455E+02
CC 19 29 1.500000E-08
HZTP 30 29 VOFP 1.523529E+02
HZTN 5 30 VOFN 1.523529E+02
DOPM 51 22 MDTH 400E-12
DONM 21 52 MDTH 400E-12
HOPM 22 28 VOUT 5.172414E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 4.054054E+03
VINM 5 27 1.500000E+02
DBIDON1 19 53 MDTH 400E-12
V1 51 53 0.68
DBIDON2 54 19 MDTH 400E-12
V2 54 52 0.68
RG11 51 5 3.04E+05
RG12 51 4 3.04E+05
```

9/14

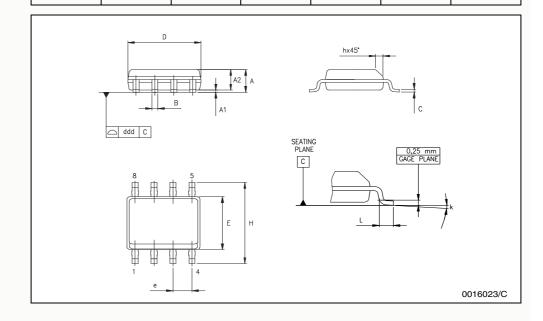
Macromodels MC33078

.ENDS


5 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

5.1 DIP8 Package


Plastic DIP-8 MECHANICAL DATA

DIM.		mm.	•	inch		•
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
Ţ			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

5.2 SO-8 Package

SO-8 MECHANICAL DATA mm. inch DIM. MIN. TYP MAX. MIN. TYP. MAX. Α 1.35 1.75 0.053 0.069 0.25 Α1 0.10 0.04 0.010 A2 1.10 1.65 0.043 0.065 В 0.33 0.51 0.013 0.020 С 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 3.80 Е 4.00 0.150 0.157 1.27 0.050 е Н 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 8° (max.) ddd 0.04

MC33078 Revision History

6 Revision History

Table 5. Document revision history

Date	Revision	Changes
Nov. 2001	1	Initial release.
June 2005	2	PPAP references inserted in the datasheet see <i>Order Codes on page 1</i> .
Sept. 2005	3	The following changes were made in this revision: - Order Codes on page 1 updated with complete list of markings and packages were corrected. - Reorganization of Chapter 4.3: Macromodel code on page 9.
Feb. 2006	4	Error in the first page title.

Revision History MC33078

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com