Proprietary 32-bit Microcontroller

CMOS

FR60 MB91310 Series

MB91F312A/FV310A

■ DESCRIPTION

The FR families are lines of single-chip microcontrollers based on a 32 -bit high-performance RISC CPU, incorporating a variety of I/O resources for embedded control applications which require high CPU performance for high-speed processing.
The FR families are best suited for embedded applications which require high-performance CPU power for processing, such as TV and POP control.
Based on the FR30/FR40 family CPU, this FR60 family is enhanced in bus access for use in faster applications.

■ FEATURE

- FR CPU
- 32-bit RISC, load/store architecture with a five-stage pipeline
- Operating frequency: 40 MHz (using PLL at an oscillation frequency of 10 MHz)
- 16 - bit fixed length instructions (basic instructions), 1 instruction per cycle
- Instruction set optimized for embedded applications: Memory-to-memory transfer, bit manipulation, barrel shift etc.
(Continued)

PACKAGE

MB91310 Series

- Instructions adapted for high-level languages: Function entry/exit instructions, multiple-register load/store instructions
- Register interlock functions: Facilitating coding in assemblers
- On-chip multiplier supported at the instruction level.

Signed 32-bit multiplication: 5 cycles.
Signed 16-bit multiplication: 3 cycles

- Interrupt (PC, PS save): 6 cycles, 16 priority levels
- Harvard architecture allowing program access and data access to be executed simultaneously
- Instruction prefetch function implemented by a four-word queue in the CPU
- Instruction compatible with FR family
- Bus interface

This bus interface is used for macro connection. (USB, MS-IF, OSDC)

- Operating frequency Max 20 MHz
- 16-bit data input/output (Interface to the USB, MS-IF, and OSDC)
- Chip-select signals can be output for completely independent eight areas allocatable in a minimum of 64 KB . The $\overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2}$, and $\overline{\mathrm{CS3}}$ areas are reserved as follows. $\overline{\mathrm{CS0}}, \overline{\mathrm{CS} 4}$, to $\overline{\mathrm{CS3}}$ are Mnusable.
CS1 area : USB host
$\overline{\mathrm{CS} 2}$ area : USB function
CS3 area : MS-IF, OSDC
- Basic bus cycle : 2 cycles
- Programmable automatic wait cycle generator capable of inserting wait cycles for each area $\overline{\mathrm{CS} 1}, \overline{\mathrm{CS} 2}$ and $\overline{\mathrm{CS} 3}$ are reserved; their settings are fixed.
- Built-in RAM
- 16 KB built RAM capacity
- This RAM can be used as instruction RAM by writing instruction code as well as data.
- DMAC (DMA Controller)
- Connected to five channels (ch0, ch1 \rightarrow USB function; ch2 \rightarrow MS-IF).
- 3 forwarding factors (internal peripheral/software)
- Addressing using 32 - bit full addressing mode (increment, decrement, fixed)
- Demand transfer, burst transfer, step transfer, or block transfer
- Selectable transfer data size: 8 -bit, 16 -bit, or 32 -bit
- Bit search module (for REALOS)
- Search for the position of the bit $1 / 0$-changed first in one word from the MSB
- Reload timer (including 1 channel for REALOS)
- 16-bit PPG timer ch3
- The internal clock is optional from 2/8/32 en surroundings.
(Continued)

MB91310 Series

- UART
- Full duplex double buffer
- UART : 5 channels
- With parity / no parity selection
- Asynchronous (start - stop synchronized) or CLK - synchronous communications selectable
- Internal timer for dedicated baud rate
- External clock can be used as transfer clock
- Assorted error detection functions (for parity, frame, and overrun errors)
- ${ }^{2} \mathrm{C}$ Interface
- Four channels are incorporated. (ch3 can be used as two ports.)
- Master/slave sending and receiving
- Arbitration function
- Clock synchronization function
- Slave address and general call address detection function
- Detecting transmitting direction function
- Bus error detection function
- Start condition repeat generation and detection function
- Standard mode (Max 100 Kbps)/High speed mode (Max 400 Kbps) supported
- Interrupt controller
- A total of five external interrupt lines are provided (1 nonmaskable interrupt pin (NMI) and 4 normal interrupt pins (INT3 to INTO).
- Interrupt from internal peripheral devices.
- Programmable priorities (16 levels) for all interrupts except the non - maskable interrupt
- Available for wakeup from STOP mode
- A/D converter
- 10-bit resolution. 10 channels
- Successive comparator type, conversion time : approx. $10 \mu \mathrm{~s}$
- Conversion modes (Single conversion mode, Scan conversion mode)
- Startup sources (software and external triggers)
- PPG
- 4 channels
- Six-bit down-counter, 16 -bit data register with cycle setting buffer
- The internal clock is optional from 1/4/16/64 en surroundings.
- PWC
- One channel (input) incorporated
- 16 bits up counter
- Simple LFP digital filter incorporated
- Timer
- Lowpass filter eliminating noise below the clock setting
- Capable of pulse width measurement according to fine settings using seven types of clock signals
- Event count function based on pin input
- Interval timer function using seven different clocks and one external input clock

MB91310 Series

(Continued)

- USB host function
- U.S.B 1.0 Specification
- 8 KB of internal RAM for parameters
- USB function
- USB 1.1 compliant full-speed double buffering
- CONTROL IN/OUT, BULK IN/OUT, INTERRUPT IN
- OSDC function
- High-quality OSDC integrated
- Analog RGB interface (with internal DAC)
- Digital RGB I/F
- Internal dot clock generator PLL
- Other internal times
- 16-bit PPG timer ch3(u-timer)
- Watch dog timer
- I/O port
- Max 72 ports
- Other features
- Internal oscillator circuit as clock source
- $\overline{\text { NIT }}$ is prepared as a reset terminal.
- Watchdog timer reset. Software reset.
- Low power consumption modes supported: Stop mode and Sleep mode
- Gear function
- Built-in time base timer
- Package : LQFP-144, 0.5 mm pitch, $20 \mathrm{~mm} \times 20 \mathrm{~mm}$
- CMOS technology ($0.25 \mu \mathrm{~m}$)
- Supply voltage: Dual power supplies at $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$

THE $I^{2} C$ LICENSE : "Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips."

MB91310 Series

PIN ASSIGNMENT

MB91310 Series

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Description
1	DOCKI	D	Dot clock input
2	FH	D	Vertical synchronous output
3	VSYNC	D	Horizontal synchronous input
4	HSYNC	D	Vertical synchronous input
5	VGS	-	Device Ground
6	CPO	K	Charge pump output
7	VSS	-	Dot clock PLL ground
8	VDDI (PLL)	-	Dot clock PLL power supply
9	VDDR (2.5 V)	-	D/A power supply for R
10	VREF (1.1 V)	K	Voltage reference input
11	VRO (2.7 k 2)	K	Resistor connection pin
12	RCOMP (0.1 $\mu \mathrm{F}$)	K	Capacitor connection pin
13	ROUT	K	R output (Analog)
14	VSSR	-	D/A Ground for R
15	VDDG (2.5 V)	-	D/A power supply for G
16	GCOMP (0.1 $\mu \mathrm{F})$	K	Capacitor connection pin
17	GOUT	K	G output (Analog)
18	VSSG	-	Device Ground for G
19	$\operatorname{VDDB~(2.5~V)~}$	-	D/A power supply for B
20	BCOMP (0.1 $\mu \mathrm{F})$	K	Capacitor connection pin
21	BOUT	K	B output (Analog)
22	VSSB	-	D/A Ground for B
23	AVCC	-	A/D Power Supply
24	AVRH	-	A/D referense power supply
25	AVSS/AVRL	-	A/D Ground
26	AN0	E	Analog input
27	AN1	E	Analog input
28	AN2	E	Analog input
29	AN3	E	Analog input
30	AN4	E	Analog input
31	AN5	E	Analog input
32	AN6	E	Analog input
33	AN7	E	Analog input
34	AN8	E	Analog input
35	AN9	E	Analog input

(Continued)

MB91310 Series

Pin no .	Pin name	Circuit type	Description
36	P00	C	General-purpose port
	SCL0		$1^{2} \mathrm{C}$ clock pin
37	P01	C	General-purpose port
	SDAO		$1^{2} \mathrm{C}$ Data pin
38	P02	C	General-purpose port
	SCL1		$1^{2} \mathrm{C}$ Clock
39	P03	C	General-purpose port
	SDA1		$1^{2} \mathrm{C}$ Data pin
40	VDDE	-	3.3 V Power Supply
41	VDDI (PLL)	-	2.5 V Power Supply
42	X0	A	$10-\mathrm{MHz}$ oscillation pin
43	VSS	-	Ground
44	X1	A	10-MHz oscillation pin
45	$\overline{\text { INIT }}$	B	Initial (reset) pin
46	P04	C	General-purpose port
	SCL2		$1^{2} \mathrm{C}$ clock
47	P05	C	General-purpose port
	SDA2		$1^{2} \mathrm{C}$ Data pin
48	P06	N	General-purpose port
	SCL3		$1^{2} \mathrm{C}$ clock
49	P07		General-purpose pors
	SCL4		$1^{2} \mathrm{C}$ clock
50	P10	N	General-purpose port
	SDA3		${ }^{1} \mathrm{C}$ data pin
51	P11		General-purpose port
	SDA4		${ }^{1} \mathrm{C}$ data pin
52	P12	C	General-purpose port
	SIO		UART0 serial input
53	P13	C	General-purpose port
	SOO		UART0 serial output
54	P14	C	General-purpose port
	SCKO		UART0 clock input/output
55	P15	C	General-purpose port
	SI1		UART1 serial input
56	P16	C	General-purpose port
	SO1		UART1 serial output

(Continued)

MB91310 Series

Pin no.	Pin name	Circuit type	Description
57	P17	C	General-purpose port
	SCK1		UART1 clock input/output
58	P20	C	General-purpose port
	SI2		UART2 serial input
59	P21	C	General-purpose port
	SO2		UART2 serial output
60	P22	C	General-purpose port
	SCK2		UART2 clock input/output
61	P23	C	General-purpose port
	SI3		UART3 serial input
62	P24	C	General-purpose port
	SO3		UART3 serial output
63	P25	C	General-purpose port
	SCK3		UART3 clock input/output
64	P30	C	General-purpose port
	SI4		UART4 serial input
	TINO		Reload timer 0 trigger input
65	P31	C	General-purpose port
	SO4		UART4 serial output
	TIN1		Reload timer 1 trigger input
66	P32	C	General-purpose port
	SCK4		UART4 clock input/output
	TIN2		Reload timer 2 trigger input
67	P33	C	General-purpose port
	TO0		Reload timer 0 output
68	P34	C	General-purpose port
	TO1		Reload timer 1 output
69	P35	C	General-purpose port
	TO2		Reload timer 2 output
70	P36	C	General-purpose port
	RIN		PWC input
71	P40	C	General-purpose port
	TMO0		Multi-function timer 0 output
72	P41	C	General-purpose port
	TMO1		Multi-function timer 1 output

(Continued)

Pin no.	Pin name	Circuit type	Description
73	P42	C	General-purpose port
	TMO2		Multi-function timer 2 output
74	P43	C	General-purpose port
	TMO3		Multi-function timer 3 output
75	VDDE	-	3.3 V power supply
76	VDDI	-	2.5 V power supply
77	X0A	A	32 kHz oscillation pin
78	VSS	-	Ground
79	X1A	A	32 kHz oscillation pin
80	P44	C	General-purpose port
	PPG0		PPG0 output
81	P45	C	General-purpose port
	PPG1		PPG1 output
82	P46	C	General-purpose port
	PPG2		PPG2 output
83	P47	C	General-purpose port
	PPG3		PPG3 output
84	MD0	F	Mode Pins
85	MD1	F	Mode Pins
86	MD2	F	Mode Pins
87	MD3	F	Mode Pins (ground)
88	P50	C	General-purpose port
	TMIO		Multi-function timer 0 input
89	P51	C	General-purpose port
	TMI1		Multi-function timer 1 input
90	P52	C	General-purpose port
	TMI2		Multi-function timer 2 input
91	P53	C	General-purpose port
	TMI3		Multi-function timer 3 input
92	P54	-	General-purpose port
	TRG0		PPG0 trigger input
93	P55	-	General-purpose port
	TRG1		PPG1 trigger input
94	P56	-	General-purpose port
	TRG2		PPG2 trigger input

(Continued)

MB91310 Series

Pin no .	Pin name	Circuit type	Description
95	P57	C	General-purpose port
	TRG3		PPG3 trigger input
96	P60	C	General-purpose port
	ATRG		A/D conversion trigger input
97	P61	C	General-purpose port
98	P62	0	General-purpose port
	INT0		External interrupt input 0
99	P63	0	General-purpose port
	INT1		External interrupt input 1
100	P64	0	General-purpose port
	INT2		External interrupt input 2
101	P65	0	General-purpose port
	INT3		External interrupt input 3
102	$\overline{\mathrm{NMII}}$	B	$\overline{\mathrm{NMII}}$ input
103	VDDE	-	3.3 V power supply
104	VDDI	-	2.5 V power supply
105	VSS	-	Ground
106	TRST	B	DSU tool reset
107	ICLK	C	DSU clock
108	IBREAK	L	DSU break
109	ICSO	M	DSU status
110	ICS1	M	DSU status
111	ICS2	M	DSU status
112	ICD0	H	DSU data
113	ICD1	H	DSU data
114	ICD2	H	DSU data
115	ICD3	H	DSU data
116	P70	1	General-purpose port
117	P71	C	General-purpose port
118	P72	C	General-purpose port
119	P73	C	General-purpose port
120	P74	H	General-purpose port
121	X0B	A	48 MHz oscillation pin
122	VSS	-	Ground

(Continued)

MB91310 Series

(Continued)

Pin no.	Pin name	Circuit type	
123	X1B	A	48 MHz oscillation pin
124	VDDI	-	2.5 V power supply
125	VDDE	-	3.3 V power supply
126	UDM	USB	USB-Function
	USB-Function		
127	UDP		USB
	USB-Host		
128	UHM		USB-Host
129	UHP		D
130	B0	RGB digital output	
131	B1	D	RGB digital output
132	B2	D	RGB digital output
133	G0	D	RGB digital output
134	G1	D	RGB digital output
135	G2	D	RGB digital output
136	R0	D	RGB digital output
137	R1	D	RGB digital output
138	R2	D	RGB digital output
139	VSS	-	Ground
140	VDDI	-	2.5 V power supply
141	VDDE	-	3.3 V power supply
142	VOB2	D	Semi Transparent color periodoutput
143	VOB1	D	OSD display period output
144	DCKO	D	Dot clock output

MB91310 Series

I/O CIRCUIT TYPE

Type	Circuit type	Remarks
A		- Oscillation circuit
B	Digital input	- CMOS hysteresis input With pull-up resistance
C		- CMOS level output. CMOS level hysteresis input With standby control
D		- 2.5 V CMOS level output. CMOS level hysteresis input With standby control

(Continued)

MB91310 Series

Type	Circuit type	Remarks
E	Analog input	- Analog input with switch
F		- CMOS level input Without standby control
G		- CMOS level hysteresis input Without standby control
H		- CMOS level output Hysteresis input Standby control provided Pull-down resistor provided

(Continued)

MB91310 Series

Type	Circuit type	Remarks
1		- CMOS level output Hysteresis input Standby control provided Pull-up resistor provided
J		- Open drain output CMOS level hysteresis input With standby control
K		- Analog pin
L		- CMOS hysteresis input With pull-down resistance

(Continued)
(Continued)

| Type | | Remarks |
| :---: | :---: | :---: | :---: |
| | | CMOS level output |

MB91310 Series

- HANDLING DEVICES

- Preventing Latchup

Latch-up may occur in a CMOS IC if a voltage greater than $\mathrm{V}_{\text {cc }}$ or less than $\mathrm{V}_{\text {ss }}$ is applied to an input or output pin or if an above-rating voltage is applied between Vcc and Vss. A latchup,if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating.

- Treatment of Unused Input Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pullup or pull-down resistor.

- About Power Supply Pins

If there are multiple VCC and VSS pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent such malfunctioning as latch up. To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the VCC and VSS pins to the power supply and ground externally.
The power pins should be connected to Vcc and Vss of this device at the lowest possible impedance from the current supply source.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between VCC and VSS near this device.

- About Crystal Oscillator Circuit

Noise near the X0 and X1 pin may cause the device to malfunction. When designing a PC board using the device, place the X0 and X1 pins, the crystal (or ceramic) oscillator, and the bypass capacitor leading to the ground as close to one another as possible.
It is strongly recommended to design PC board so that X0 and X 1 pins are surrounded by grounding area for stable operation.

- About Mode Pins (MDO to MD3)

These pins should be connected directly to VCC or VSS. To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and VCC or V .0 is as short as possible and the connection impedance is low.

- About Tool Reset Pin (TRST)

This pin must input the same signal as that to $\overline{\text { NIT }}$ when the tool is not used. Apply the same treatment to massproduced products as well.

- Operation at Start-up

A setting initialization reset (INIT) must always be performed via the INIT pin immediately after the power supply is turned on or recycled.
Immediately after the power supply is turned on, hold the Low level input to the INIT pin for the settling time required for the oscillator circuit to take the oscillation stabilization wait time for the oscillator circuit. (For INIT via the INIT pin, the oscillation stabilization wait time setting is initialized to the minimum value.)

MB91310 Series

- Oscillation Input at Power-ON

When turning the power on, maintain clock input until the device is released from the oscillation stabilization wait state.

- Notes on Power-ON/shut-down

Cautions to take when turning on/off VDDI (2.5-V internal power supply) and VDDE (3.3-V external-pin power supply)
Do not apply VDDE (external) alone continuously (for over an indication of one minute) with VDDI (internal) disconnected not to cause a reliability problem with the LSI.
When VDDE (external) returns from the OFF state to the ON state, the circuit may fail to hold its internal state, for example, due to power supply noise.

When the power is turned on VDDI (internal) \rightarrow Analog \rightarrow VDDE (external) \rightarrow Signal
When the power is turned off \quad Signal \rightarrow VDDE (external) \rightarrow Analog \rightarrow VDDI (internal)

- Undefined Output on Power-ON

When the power supply is turned on, the output pin may remain indeterminate until the internal power supply becomes stable.

- About the attention when the external clock is used

When the external clock is used, in principle, supply a clock signal to the XO ($\mathrm{XOA}, \mathrm{XOB}$) pin and an oppositephase clock signal to the X1 (X1A, X1B) pin at the same time. However, In this case. the stop mode must not be used.(This is because, in STOP mode, the X1 (X1A, X1B) pin stops at "H" output.) At 12.5 MHz or less, the device can be used with the clock signal supplied only to the X0 (XOA, XOB) pin.
An example of using the external clock is illustrated below.

[STOP mode (oscillation stop mode) cannot be used.]
External clock usage (normal)

Note : The $\mathrm{X} 1(\mathrm{X1A}, \mathrm{X1B}$) pin must be designed to have a delay within 15 ns , at 10 MHz , from the signal to the X 0 (X0A, X0B) pin.

MB91310 Series

- Restrictions

Common in the MB91310 series
(1) Clock Control Block

Take the oscillation stabilization wait time during Low level input to the INIT pin.
(2) Bit Search Module

The 0-detection data register (BSD0), 1-detection data register (BSD1), and transition-detection data register (BSDC) are only word-accessible.
(3) I/O Port

Ports are accessed only in bytes.
(4) Low Power Consumption Mode

To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit 8 in the TBCR, or time-base counter control register) and be sure to use the following sequence:
(LDI \#value_of_standby, R0)
(LDI \#_STCR, R12)
STB R0, @R12 : Write to standby control register (STCR)
LDUB @R12, R0 : STCR lead for synchronous standby
LDUB @R12, R0 : Dummy re-lead of STCR
NOP : NOP $\times 5$ for timing adjustment
NOP
NOP
NOP
NOP
In addition, set the I-flag and the ILM and ICR registers to branch to an interrupt handler when the interrupt handler triggers the microcontroller to return from the standby mode.
Please do not do the following when the monitor debugger is used.

- Set a break point within the above array of instructions.
- Single-step the above instructions.
(5) Pre-fetch

When accessing a prefetch-enabled little endian area, be sure to use word access (in 32-bit, word length) only. Byte or half-word access results in wrong data read.
(6) Notes on the PS register

As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated.
As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.

1. The following operations are performed when (c) the instruction followed by a data event or a DIVOU/DIVOS emulator menu instruction (a) receives a user interrupt or NMI or (b) breaks when single-stepped.

MB91310 Series

- The D0 and D1 flags are updated in advance.
- An EIT handling routine (user interrupt, NMI, or emulator) is executed.
- Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as in (1).

2. The following operations are performed when the ORCCR/STILM/MOV Ri and PS instructions are executed.

- The PS register is updated in advance.
- An EIT handling routine (user interrupt or NMI) is executed.
- Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1).

(7) Watchdog Timer

The watchdog timer built in this model monitors a program to check that it defers a reset within a certain period of time. The watchdog timer resets the CPU if the program runs out of controls, preventing the reset defer function from being executed. Once the function of the watchdog timer is enabled, therefore, the watchdog timer keeps on watching programs until it resets the CPU.
As an exception, the watchdog timer defers a reset automatically under the condition in which the CPU stops program execution. Refer to the watchdog timer function description for the exceptional condition. If the system runs out of control and develops the above condition, a watchdog reset may not be generated. In that case, please reset (INIT) by external INIT terminal.
(8) Notes on using the A/D converter

The MB91310 series contains an A/D converter. Supply power to the AV cc at 3.3 V .
Unique to the evaluation chip MB91FV310A
(1) Simultaneous occurrences of a software break and a user interrupt/NMI

If a software break and a user interrupt/NMI occurs simultaneously, the emulator debugger may react as follows.

- The debugger stops pointing to a location other than the programmed break points.
- The halted program is not re - executed correctly.

If this symptom occurs, use a hardware break in place of a hardware break. If you use the monitor debugger, do not set a break point within the relevant array of instructions.
(2) Single-stepping of the RETI instruction

If an interrupt occurs frequently during single stepping, execute only the relevant processing routine repeatedly after single-stepping RETI. This will prevent the main routine and low-interrupt-level programs from being executed. Do not single-step the RETI instruction for avoidance purposes. When the debugging of the relevant interrupt routine becomes unnecessary, perform debugging with that interrupt disabled.
(3) About an Operand Break

Do not apply a data event break to access to the area containing the address of a stack pointer.
(4) Sample Batch File for Configuration

To debug a program downloaded to internal RAM, be sure to execute the following batch file after executing RESET.

```
# Set MODR (0x7fd) = Enable In memory + 16-bit External Bus
set mem/byte 0x7fd = 0x5
```


MB91310 Series

BLOCK DIAGRAM

MB91310 Series

MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) available to the CPU by linear access.

Direct Addressing Areas

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.
The size of directly addressable areas depends on the length of the data being accessed as shown below.

$$
\begin{array}{ll}
\rightarrow \text { byte data access } & : 0-0 \mathrm{FF} \\
\rightarrow \text { half word data access } & : 0-1 \mathrm{FF} \\
\rightarrow \text { word data access } & : 0-3 \mathrm{FF}
\end{array}
$$

2. Memory Map

The figure below shows the memory space of the this item kind.

MB91310 Series

I/O MAP

This shows the location of the various peripheral resource registers in the memory space. [How to read the table]

Address	Register				Block
	+ 0	+1	+2	+ 3	
$\mathrm{O}_{1}^{00000 \mathrm{O}_{\mathrm{H}}}$	PDRO [R/W] xx-xxx	PDR1 [R/W] XXXXXXXX	PDR2 [R/W] XXXXXXXX	PDR3 [R/W] XXXXXXXX	T-unit Port Data Register
		Read/Write attribute Initial value after a reset Register name (First-column register at address 4n; second-column register at address $4 \mathrm{n}+2$)			

Note:Initial values of register bits are represented as follows:

$" 1 "$: Initial Value: "1"
$" 0 "$: Initial Value: " 0 "
$" X "$: Initial Value: " X "
"-"	No physical register at this location

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
$\begin{gathered} 000000_{\mathrm{H}} \\ \text { to } \\ 00000 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	-	-	-	-	Reserved
000010 ${ }_{\text {H }}$	PDRO [R/W] XXXXXXXX	PDR1 [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { PDR2 [R/W] } \\ & \text {--XXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { PDR3 [R/W] } \\ & \text {-XXXXXXX } \end{aligned}$	R-bus Port Data Register
000014	PDR4 [R/W] XXXXXXXX	PDR5 [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { PDR6 [R/W] } \\ & \text {--XXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { PDR7 [R/W] } \\ & \text {---XXXXX } \end{aligned}$	
000018	-	-	-	-	
$00001 \mathrm{CH}_{\mathrm{H}}$	-	-	-	-	
000020н	$\begin{aligned} & \text { ADCTH [R/W] } \\ & \text { XXXXXX00 } \end{aligned}$	$\begin{gathered} \text { ADCTL [R/W] } \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \text { ADCH [R/W] } \\ 00000000 _00000000 \end{gathered}$		10 bit A/D converter
000024	ADATO [R]XXXXXX00_00000000		ADAT1 [R] XXXXXX00_00000000		
000028	ADAT2 [R] XXXXXX00_00000000		ADAT3 [R] XXXXXX00_00000000		
00002CH	$\begin{gathered} \text { ADAT4 [R] } \\ \text { XXXXXX00_00000000 } \end{gathered}$		ADAT5 [R] XXXXXX00_00000000		
000030н	ADAT6 [R] XXXXXX00_00000000		ADAT7 [R]XXXXXX00_00000000		
000034	ADAT8 [R] XXXXXX00_00000000		ADAT9 [R]XXXXXX00_00000000		
000038	-	-	-	-	Reserved
00003CH	-	-	-	-	
000040н	$\begin{aligned} & \hline \text { EIRR [R/W] } \\ & 00000000 \end{aligned}$	ENIR [R/W] 00000000	$\begin{gathered} \hline \text { ELVR [R/W] } \\ 00000000 \end{gathered}$		Ext int
000044	$\begin{gathered} \text { DICR }[\text { [R/W] } \\ \hline-----0 \end{gathered}$	$\begin{gathered} \text { HRCL [R/W] } \\ 0--11111 \end{gathered}$	-		DLYI/I-unit
000048	$\begin{gathered} \text { TMRLRO [W] } \\ \mathrm{XXXXXXXXXXXX} \end{gathered}$		TMR0 [R] XXXXXXXX XXXXXXXX		Reload Timer 0
00004CH	-		$\begin{gathered} \text { TMCSR0 [R/W] } \\ ----000000000000 \end{gathered}$		
000050н	TMRLR1 [W] XXXXXXXX XXXXXXXX		TMR1 [R] XXXXXXXX XXXXXXXX		Reload Timer 1
000054	-		$\begin{gathered} \text { TMCSR1 [R/W] } \\ ----000000000000 \end{gathered}$		
000058	TMRLR2 [W] XXXXXXXX XXXXXXXX		TMR2 [R]xxxxxxxx xxxxxxxx		Reload Timer 2
00005CH	-		$\begin{gathered} \hline \text { TMCSR2 [R/W] }---000000000000 \end{gathered}$		

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+ 2	+ 3	
000060н	$\begin{gathered} \hline \text { SSR [R/W] } \\ 00001-00 \end{gathered}$	SIDR [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{gathered} \hline \text { SMR [R/W] } \\ 00--0-0- \end{gathered}$	UART0
000064	UTIM [R] (UTIMR [W]) 0000000000000000		$\begin{gathered} \text { DRCL [W] } \\ \text {-------- } \end{gathered}$	$\begin{gathered} \hline \text { UTIMC [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 0
000068	$\begin{aligned} & \hline \text { SSR [R/W] } \\ & 00001-00 \end{aligned}$	SIDR [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{gathered} \hline \text { SMR [R/W] } \\ 00--0-0- \end{gathered}$	UART1
00006CH	UTIM [R] (UTIMR [W]) 0000000000000000		DRCL [------	$\begin{gathered} \hline \text { UTIMC [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 1
000070	$\begin{aligned} & \text { SSR [R/W] } \\ & 00001-00 \end{aligned}$	$\begin{aligned} & \text { SIDR [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{gathered} \text { SMR [R/W] } \\ 00--0-0-1 \end{gathered}$	UART2
000074	UTIM [R] (UTIMR [W]) 0000000000000000		$\begin{gathered} \hline \text { DRCL [W] } \\ \text {-------- } \end{gathered}$	$\begin{gathered} \hline \text { UTIMC [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 2
000078	$\begin{aligned} & \hline \text { SSR [R/W] } \\ & 00001-00 \end{aligned}$	$\begin{aligned} & \hline \text { SIDR [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{gathered} \hline \text { SMR [R/W] } \\ 00-0-0- \end{gathered}$	UART3
00007CH	UTIM [R] (UTIMR [W]) 0000000000000000		DRCL [W]	$\begin{gathered} \hline \text { UTIMC [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 3
000080н	$\begin{aligned} & \text { SSR [R/W] } \\ & 00001-00 \end{aligned}$	SIDR [R/W] XXXXXXXX	$\begin{aligned} & \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{gathered} \text { SMR [R/W] } \\ 00--0-0- \end{gathered}$	UART4
000084	UTIM [R] (UTIMR [W]) 0000000000000000		$\begin{gathered} \hline \text { DRCL [W] } \\ \text {-------- } \end{gathered}$	$\begin{gathered} \hline \text { UTIMC [R/W] } \\ 0--00001 \end{gathered}$	U-TIMER 4
000088 +	-		-		
$00008 \mathrm{CH}_{\text {H }}$	-		-		Reserved
000090н	PWCC [R/W]	PWCC [R/W]	-		
000094	PWCD [R] XXXXXXXX_XXXXXXXX		-		PWC
000098 ${ }_{\text {H }}$	-		-		Reserved
00009CH	-		-		
0000AOH	-		-		
0000A4н	-		-		
0000A8н	-		-		
0000ACH	-		-		
0000B0н	-	-	-	-	
0000B4н	$\begin{aligned} & \hline \text { IBCR [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { IBSR [R/W] } \\ 00000000 \end{gathered}$	ITBA [R/W]-----000000000		$1^{2} \mathrm{C}$ interfacech0
0000B8н	$\begin{gathered} \text { ITMK [R/W] } \\ 00---111111111 \end{gathered}$		$\begin{gathered} \text { ISMK [R/W] } \\ 01111111 \end{gathered}$	ISBA [R/W] 00000000	
0000BCH	-	IDAR [R/W] 00000000	$\begin{gathered} \hline \text { ICCR [R/W] } \\ 0-011111 \end{gathered}$	$\begin{gathered} \hline \text { IDBL [R/W] } \\ ------0 \end{gathered}$	
0000COH	-	-	-	-	Reserved

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
0000C4	$\begin{gathered} \hline \text { IBCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { IBSR [R/W] } \\ 00000000 \end{gathered}$	ITBA [R/W]-----000000000		${ }^{12} \mathrm{C}$ interface ch1
0000C8н	$\begin{gathered} \text { ITMK [R/W] } \\ 00---111111111 \end{gathered}$		$\begin{gathered} \hline \text { ISMK [R/W] } \\ 01111111 \end{gathered}$	$\begin{aligned} & \text { ISBA [R/W] } \\ & 00000000 \end{aligned}$	
0000ССн	-	$\begin{gathered} \hline \text { IDAR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ICCR [R/W] } \\ 0-011111 \end{gathered}$	$\begin{gathered} \text { IDBL [R/W] } \\ \text {--------0 } \end{gathered}$	
0000D0н	-	-	-	-	Reserved
0000D4н	$\begin{aligned} & \hline \text { IBCR [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { IBSR [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ITBA [R/W] } \\ & -----0000000000 \end{aligned}$		${ }^{12} \mathrm{C}$ interface ch2
0000D8н	$\begin{gathered} \text { ITMK [R/W] } \\ 00----111111111 \end{gathered}$		$\begin{gathered} \hline \text { ISMK [R/W] } \\ 01111111 \end{gathered}$	$\begin{aligned} & \hline \text { ISBA [R/W] } \\ & 00000000 \end{aligned}$	
0000DCн	-	$\begin{gathered} \hline \text { IDAR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ICCR [R/W] } \\ 0-011111 \end{gathered}$	$\begin{gathered} \hline \text { IDBL [R/W] } \\ ------0 \end{gathered}$	
0000E0н	-	-	-	-	Reserved
0000E4н	$\begin{gathered} \hline \text { IBCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { IBSR [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { ITBA [R/W] } \\ & -----0000000000 \end{aligned}$		$I^{2} \mathrm{C}$ interface ch3
0000E8н	$\begin{gathered} \text { ITMK [R/W] } \\ 00---111111111 \end{gathered}$		$\begin{aligned} & \hline \text { ISMK [R/W] } \\ & 01111111 \end{aligned}$	ISBA [R/W] 00000000	
0000EСн	-	$\begin{gathered} \hline \text { IDAR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ICCR [R/W] } \\ 0-011111 \end{gathered}$	$\begin{gathered} \hline \text { IDBL [R/W] } \\ ------0 \end{gathered}$	
0000FOH	$\begin{gathered} \hline \text { TOLPCR [R/W] }---000 \end{gathered}$	$\begin{gathered} \hline \text { TOCCR [R/W] } \\ 0-010000 \end{gathered}$	$\begin{aligned} & \hline \text { TOTCR [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { TOR [R/W] } \\ ---00000 \end{gathered}$	Multi-function timer
0000F4H	TODRR [R/W] XXXXXXXX XXXXXXXX		$\begin{gathered} \text { TOCRR [R/W] } \\ \text { XXXXXXXXXXXXXXX } \end{gathered}$		
0000F8н	$\begin{gathered} \text { T1LPCR [R/W] }----000 \end{gathered}$	$\begin{gathered} \hline \text { T1CCR [R/W] } \\ 0-000000 \end{gathered}$	$\begin{gathered} \hline \text { T1TCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { T1R [R/W] } \\ ---00000 \end{gathered}$	
0000 FC C	T1DRR [R/W] XXXXXXXX XXXXXXXX		T1CRR [R/W] XXXXXXXX XXXXXXXX		
000100н	$\begin{gathered} \text { T2LPCR [R/W] }----000 \end{gathered}$	$\begin{gathered} \hline \text { T2CCR [R/W] } \\ 0-000000 \end{gathered}$	$\begin{gathered} \hline \text { T2TCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { T2R [R/W] } \\ ---00000 \end{gathered}$	
000104H	T2DRR [R/W] XXXXXXXX XXXXXXXX		T2CRR [R/W] XXXXXXXX XXXXXXXX		
000108н	$\begin{gathered} \hline \text { T3LPCR [R/W] }----000 \end{gathered}$	$\begin{gathered} \hline \text { T3CCR [R/W] } \\ 0-000000 \end{gathered}$	$\begin{gathered} \hline \text { T3TCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { T3R [R/W] } \\ ---00000 \end{gathered}$	
00010С ${ }_{\text {\% }}$	T3DRR [R/W] XXXXXXXX XXXXXXXX		$\begin{gathered} \text { T3CRR [R/W] } \\ \text { XXXXXXX XXXXXXXX } \end{gathered}$		
000110н	-	-	-	-	Reserved
000120н	$\begin{gathered} \text { PTMR0 [R] } \\ \text { 1111111__1111111 } \end{gathered}$		$\begin{gathered} \text { PCSR0 [W] } \\ \text { XXXXXXXX_XXXXXXX } \end{gathered}$		PPG0
000124H	PDUTO [W] XXXXXXXX_XXXXXXXX		$\begin{gathered} \hline \text { PCNHO [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNLO [R/W] } \\ 00000000 \end{gathered}$	

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
000128	$\begin{gathered} \hline \text { PTMR1 [R] } \\ \text { 11111111_11111111 } \end{gathered}$		PCSR1 [W] XXXXXXXX XXXXXXXX		PPG1
00012С ${ }_{\text {H }}$	PDUT1 [W] XXXXXXXX_XXXXXXXX		PCNH1 [R/W] PCNL1 [R/W] 00000000 00000000		
000130н	$\begin{gathered} \text { PTMR2 [R] } \\ \text { 1111111_1111111 } \end{gathered}$		PCSR2 [W] XXXXXXXX_XXXXXXXX		PPG2
000134H	PDUT2 [W] XXXXXXXX_XXXXXXXX		PCNH2 [R/W] PCNL2 [R/W] 00000000 00000000		
000138	$\begin{gathered} \text { PTMR3 [R] } \\ \text { 1111111_1111111 } \end{gathered}$		$\begin{gathered} \text { PCSR3 [W] } \\ \text { XXXXXXXX_XXXXXXX } \end{gathered}$		PPG3
00013Сн	PDUT3 [W] XXXXXXXX_XXXXXXXX		$\begin{gathered} \hline \text { PCNH3 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL3 [R/W] } \\ 00000000 \end{gathered}$	
000140н	-	-	-	-	Reserved
000144	-	-	-	-	
000148	-	-	-	-	
$00014 \mathrm{CH}_{\text {H }}$	-	-	-	-	
000150н	-	-	-	-	
000154	-	-	-	-	
000158н	-	-	-	-	
00015 C $_{\text {H }}$	-	-	-	-	
$\begin{aligned} & 000160 \mathrm{H} \\ & \text { to } \\ & 0001 \mathrm{FC} \text { C } \end{aligned}$	-	-	-	-	
000200н	DMACAO [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				DMAC
000204H	DMACB4 [R/W]00000000000000000000000000000000				
000208н	DMACA1 [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
00020С ${ }_{\text {H }}$	DMACB4 [R/W]00000000000000000000000000000000				
000210н	DMACA2 [R/W]$000000000000 \times X X X \text { XXXXXXXX XXXXXXXX }$				
000214H	DMACB4 [R/W]00000000000000000000000000000000				
000218н	DMACA3 [R/W] $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
00021 CH	DMACB4 [R/W]00000000000000000000000000000000				

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
000220н	DMACA4 [R/W]$000000000000 X X X X ~ X X X X X X X X ~ X X X X X X X X$				DMAC
000224н	DMACB4 [R/W]00000000000000000000000000000000				
000228н	-				
$\begin{gathered} \hline 00022 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 00023 \mathrm{C}_{\mathrm{H}} \end{gathered}$	-				Reserved
000240н	DMACR [R/W]$0 \times X 00000 \text { XXXXXXXX XXXXXXXX XXXXXXXX }$				DMAC
$\begin{gathered} \hline 000244_{H} \\ \text { to } \\ 0002 \text { FCH }_{H} \end{gathered}$	-				
$\begin{gathered} \hline 000300_{H} \\ \text { to } \\ 0003 \text { ECH }^{2} \end{gathered}$	-				
0003F0н	BSDO [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				Bit Search Module
0003F4н	BSD1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003F8н					
0003FCH	BSRR [R] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000400н	$\begin{gathered} \hline \text { DDR0 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { DDR1 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { DDR2 [R/W] } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { DDR3 [R/W] } \\ -0000000 \end{gathered}$	R-bus Port Direction Register
000404н	$\begin{gathered} \text { DDR4 [R/W] } \\ 00000000 \end{gathered}$	DDR5 [R/W] 00000000	$\begin{gathered} \hline \text { DDR6 [R/W] } \\ --000000 \end{gathered}$	$\begin{gathered} \text { DDR7 [R/W] } \\ ---00000 \end{gathered}$	
000408н	-	-	-	-	
00040 CH	-	-	-	-	
000410н	$\begin{gathered} \text { PFRO }[R / W] \\ 0--00000 \end{gathered}$	PFR1 [R/W] 00000000	$\begin{gathered} \hline \text { PFR2 }[\mathrm{R} / \mathrm{W}] \\ 000--00 \end{gathered}$	PFR3 [R/W] 00000000	R-bus Port Function Register
000414н	PFR4 [R/W] $0------$	-	-	-	
000418н	-	-	-	-	
00041 CH	-	-	-	-	
$\begin{gathered} \hline 000420_{\mathrm{H}} \\ \text { to } \\ 00043 \mathrm{CH}_{\mathrm{H}} \end{gathered}$	-				Reserved

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+ 3	
000440	$\begin{gathered} \hline \text { ICR00 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR01 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR02 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03 [R/W] } \\ --11111 \end{gathered}$	Interrupt Control unit
000444н	$\begin{gathered} \text { ICR04 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR05 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR06 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR07 [R/W] } \\ ---11111 \end{gathered}$	
000448н	$\begin{gathered} \hline \text { ICR08 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR09 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR10 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR11 [R/W] } \\ ---11111 \end{gathered}$	
00044CH	$\begin{gathered} \text { ICR12 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR13 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR14 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR15 [R/W] } \\ ---11111 \end{gathered}$	
000450н	$\begin{gathered} \hline \text { ICR16 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR17 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR18 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR19 [R/W] } \\ ---11111 \end{gathered}$	
000454н	$\begin{gathered} \text { ICR20 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR21 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR22 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR23 [R/W] } \\ ---11111 \end{gathered}$	
000458	$\begin{gathered} \text { ICR24 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR25 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR26 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR27 [R/W] } \\ ---11111 \end{gathered}$	
00045CH	$\begin{gathered} \text { ICR28 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR29 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR30 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR31 [R/W] } \\ ---11111 \end{gathered}$	Interrupt Control unit
000460н	$\begin{gathered} \hline \text { ICR32 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR33 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR34 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR35 [R/W] } \\ ---11111 \end{gathered}$	
000464н	$\begin{gathered} \text { ICR36 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR37 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR38 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39 [R/W] } \\ ---11111 \end{gathered}$	
000468	$\begin{gathered} \hline \text { ICR40 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR41 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR42 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR43 [R/W] } \\ ---11111 \end{gathered}$	
00046CH	$\begin{gathered} \hline \text { ICR44 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR45 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR46 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47 [R/W] } \\ ---11111 \end{gathered}$	
$\begin{gathered} 000470_{\mathrm{H}} \\ \text { to } \\ 00047 \mathrm{C}_{\mathrm{H}} \end{gathered}$	-				-
000480н	$\begin{aligned} & \hline \text { RSRR [R/W] } \\ & 10000000^{* 2} \end{aligned}$	$\begin{aligned} & \hline \text { STCR [R/W] } \\ & 00110011^{* 2} \end{aligned}$	TBCR [R/W] 00XXXX00*1	CTBR [W] XXXXXXXX	Clock Control unit
000484н	$\begin{aligned} & \text { CLKR [R/W] } \\ & 00000000^{* 1} \end{aligned}$	WPR [W] XXXXXXXX	DIVR0 [R/W] 00000011*1	DIVR1 [R/W] $00000000^{* 1}$	
000488	-	-	$\begin{aligned} & \text { OSCCR [R/W] } \\ & \text { XXXXXXXO } \end{aligned}$	-	-
00048CH	WPCR [R/W] B $00--000$	-	-	-	Clock timer
000490н	$\begin{gathered} \text { OSCR [R/W] B } \\ 00---000 \end{gathered}$	-	-	-	Oscillation Stabilization Waiting

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
$\begin{gathered} \text { 000494н } \\ \text { to } \\ 0005 \text { C }_{H} \end{gathered}$	-				Reserved
000600н	-	-	-	-	T-unit Port Direction Register
000604н	-	-	-	-	
000608н	-	-	-	-	
00060 ¢ $_{\text {н }}$	-	-	-	-	
000610н	-	-	-	-	T-unit Port Function Register
000614	-	-	-	-	
000618н	-	-	-	-	
00061 С ${ }_{\text {¢ }}$	-	-	-	-	
000620н	-				
000624	-				
$\begin{gathered} 000628 \mathrm{H} \\ \text { to } \\ 00063 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	-				Reserved
000640н	ASRO $[R / W]$$0000000000000000^{* 1}$		ACRO $[\mathrm{R} / \mathrm{W}]$$111 \mathrm{XX} 0000000000^{* 1}$		T-unit
000644H	ASR1 [R/W] XXXXXXXX \times XXXXXXX* ${ }^{*}$		ACR1 [R/W] XXXXXXXX XXXXXXXX *1		
000648н	ASR2 [R/W] XXXXXXXX \times XXXXXXX*		ACR2 [R/W] XXXXXXXX XXXXXXXX*1		
00064CH	ASR3 [R/W] XXXXXXXX XXXXXXXX*1		ACR3 [R/W] XXXXXXXX XXXXXXXX*		
000650н	ASR4 [R/W] XXXXXXXX XXXXXXXX* ${ }^{*}$		ACR4 [R/W] XXXXXXXX XXXXXXXX* ${ }^{*}$		
000654H	ASR5 [R/W] XXXXXXXX XXXXXXXX*1		ACR5 [R/W] XXXXXXXX $\operatorname{XXXXXXXX*1~}$		
000658н	XXXXX	$\left\langle X X X^{* 1}\right.$	XXXXX	$\left\langle X X X^{\star 1}\right.$	
00065Cн	XXXXX	$\left\langle X X X^{\star 1}\right.$	XXXX)	$\left\langle X X X^{\star 1}\right.$	
000660н	0111	$111^{* 1}$	XXXXX	$\left\langle X X X^{* 1}\right.$	
000664H	XXXXX	$\left\langle X X X^{\star 1}\right.$	XXXXX	$\left\langle X X X^{\star 1}\right.$	
000668	AWR4 [R/W] XXXXXXXX \quad XXXXXXXX*		AWR5 [R/W] XXXXXXXX $X X X X X X X X^{* 1}$		

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
00066Сн	AWR6 [R/W] XXXXXXXX $\mathrm{XXXXXXXX}^{* 1}$		AWR7 [R/W] XXXXXXXX ${ }^{2} X X X X X X$ ¹ $^{* 1}$		T-unit
000670н	-				
000674	-				
000678н	IOWRO [R/W] XXXXXXXX	IOWR1 [R/W] XXXXXXXX	IOWR2 [R/W] XXXXXXXX	-	
$00067 \mathrm{CH}_{\text {H }}$	-				
000680н	CSER [R/W] 000000001	$\begin{gathered} \hline \text { CHER [R/W] } \\ 11111111 \end{gathered}$	-	$\begin{aligned} & \text { TCR [R/W] } \\ & \text { 0nonono } \end{aligned}$	
000684H	-				
$\begin{gathered} \hline 000684_{\mu} \\ \text { to } \\ 0007 \mathrm{~F} 8 \text { н } \end{gathered}$	-				Reserved
0007FCH	-	MODR [W] $\times X X X X X X X$ XXXXXXXX	-	-	-
$\begin{gathered} \hline 000800_{\mathrm{H}} \\ \text { to } \\ 000 \mathrm{AFCH} \end{gathered}$	-				Reserved
000B00н	$\begin{gathered} \text { ESTS0 [R/W] } \\ \text { X0000000 } \end{gathered}$	ESTS1 [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { ESTS2 [R] } \\ & \text { 1XXXXXXX } \end{aligned}$	-	DSU
000B04	$\begin{aligned} & \text { ECTLO [R/W] } \\ & 0 \times 000000 \end{aligned}$	$\begin{gathered} \hline \text { ECTL1 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { ECTL2 [W] } \\ & 000 \times 0000 \end{aligned}$	$\begin{gathered} \hline \text { ECTL3 [R/W] } \\ 00 \times 00 \times 11 \end{gathered}$	
000B08 ${ }_{\text {+ }}$	$\begin{aligned} & \text { ECNTO [W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { ECNT1 [W] } \\ & \text { XXXXXXX } \end{aligned}$	$\begin{aligned} & \text { EUSA [W] } \\ & \text { XXX00000 } \end{aligned}$	$\begin{aligned} & \hline \text { EDTC [W] } \\ & 0000 X X X X \end{aligned}$	
000B0CH	EWPT [R]0000000000000000		-		
000B10 ${ }_{\text {H }}$	$\begin{gathered} \text { EDTRO [W] } \\ \mathrm{XXXXXXXXXXXXXX} \end{gathered}$		EDTR1 [W] XXXXXXXX XXXXXXXX		
000B14н to $000 \mathrm{B1} \mathrm{C}_{\mathrm{H}}$	-				
000B20н	EIAO [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B24 ${ }_{\text {H }}$					
000B28 +	EIA2 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B2CH	EIA3 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B30н	EIA4 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
000B34н	EIA5 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				DSU
000B38	EIA6 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B3C	EIA7 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B40н	EDTA [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B44н	EDTM [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B48	EOAO [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B4CH	EOA1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B50н	EPCR [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B54н	EPSR [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B58н	EIAMO [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B5CH	EIAM1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B60н	EOAM0/EODM0 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B64н	EOAM1/EODM1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B68н	EODO [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
000B6C	EOD1 [W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
$\begin{gathered} \hline \text { 000B70н } \\ \text { to } \\ 000 \mathrm{FFC} \end{gathered}$	-				Reserved
001000 ${ }_{\text {H }}$	DMASAO [R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				DMAC
001004н	DMADAO [R/W]XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001008н	DMASA1 [R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
00100С ${ }_{\text {H }}$	DMADA1 [R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
001010н	DMASA2 [R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				DMAC
001014	DMADA2 [R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001018H	DMASA3 [R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
00101Сн	DMADA3 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
001020н	DMASA4 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
001024н	DMADA4 [R/W] XXXXXXXX $\operatorname{XXXXXXXX~XXXXXXXX~} \quad$ XXXXXXXX				
$\begin{aligned} & \text { 001028н } \\ & \text { to } \\ & 006 \text { FFC } \end{aligned}$	-				Reserved
007000н	$\begin{aligned} & \hline \text { FLCR [R/W] } \\ & 0110 _X 000 \end{aligned}$		-		Program FLASH I/F
007004н	$\begin{gathered} \hline \text { FLWC [R/W] } \\ 0001 _0011 \end{gathered}$		-		
$\begin{gathered} \hline 007008 \text { н } \\ \text { to } \\ 00707 \text { CH }^{2} \end{gathered}$	-				Reserved
$\begin{gathered} \text { 007080н } \\ \text { to } \\ 0070 \mathrm{FC} \end{gathered}$	-				Reserved
007100н	$\begin{gathered} \hline \text { FNCR [R/W] } \\ 0110 _X 000 \end{gathered}$		-		FONT FLASH I/F
007104H	FNWC [R/W] 00010011		-		
00050000н	HR (Hc Revision) [R]$00000000 _00000000 _00000001 _00010000$				USB Host
00050004н	HC (Hc Control) [R/W]$00000000 _00000000 _00000000 _00000000$				
00050008H	$\begin{gathered} \text { HCS (Hc Command Status) [R/W] } \\ 00000000 _00000000 _00000000 _00000000 \end{gathered}$				
$0005000 \mathrm{CH}_{\text {}}$	$\begin{gathered} \text { HIS (Hc Interrupt Status) [R/W] } \\ 00000000 _00000000 \text { _0000000_00000000 } \end{gathered}$				
00050010н	$\begin{gathered} \text { HIE (Hc Interrupt Enable) [R/W] } \\ 00000000 _00000000 _00000000 _00000000 \end{gathered}$				
00050014	HID (Hc Interrupt Disable) [R/W] 00000000_00000000_00000000_00000000				

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+1	+2	+3	
00050018н	HHCCA (Hc HCCA) [R/W]$00000000 _00000000 _00000000 _00000000$				USB Host
0005000Сн	HPCED (Hc Period Current ED) [R/W] 00000000_00000000_00000000_00000000				
00050020н	HCHED (Hc Control Head ED) [R/W] 00000000_00000000_00000000_00000000				
00050024	HCCED (Hc Control Current ED) [R/W] 00000000_00000000_00000000_00000000				
00050028н	HBHED (Hc Bulk Head ED) [R/W]00000000 _00000000_00000000_00000000				
0005002Сн	HBCED (Hc Bulk Current ED) [R/W] 00000000_00000000_00000000_00000000				
00050030н	HDH (Hc Done Head) [R/W]$00000000 _00000000 _00000000 _00000000$				
00050034H	HFI (Hc Fm Interval) [R/W]$00000000 _00000000 _00101110 _11011111$				
00050038	HFR (Hc Fm Remaining) [R]$00000000 _00000000 _00000000 _00000000$				
0005003Сн	HFN (Hc Fm Number) [R]$00000000 _00000000 _00000000 _00000000$				
00050040н		$\begin{array}{r} \text { HPS (HC } \\ 00000000 _000 \\ \hline \end{array}$	$\begin{aligned} & \text { art) [R } \\ & 0000 \end{aligned}$		
00050044		$\begin{array}{r} \hline \text { HLST (H } \\ 00000000 _000 \end{array}$	$\begin{aligned} & \text { old) [R } \\ & 0110 \end{aligned}$		
00050048		$\begin{array}{r} \text { HRDA (HC } \\ 00000001 _000 \end{array}$	$\begin{aligned} & \text { or A) } \\ & 0000 \end{aligned}$		
0005004Сн		$\begin{array}{r} \text { HRDB (HC } \\ 00000000 _000 \end{array}$	$\begin{aligned} & \text { or B) } \\ & 0000 \end{aligned}$		
00050050н		$\begin{array}{r} \text { HRS (} \\ 00000000 _000 \end{array}$	$\begin{aligned} & \text { 3) }[R / V \\ & 0000 \end{aligned}$		
00050054		$\begin{aligned} & \text { HRPS1 (Hc } \\ & 00000000 _000 \end{aligned}$	$\begin{aligned} & \text { tus[1]) } \\ & 0000 \end{aligned}$		
00050058н		$\begin{aligned} & \text { HRPS2 (Hc } \\ & 00000000 _000 \end{aligned}$			
$\begin{aligned} & \hline 0005005 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 00057 \mathrm{FFFF}_{\mathrm{H}} \end{aligned}$					
$\begin{aligned} & \hline 00058000_{\mathrm{H}} \\ & \text { to } \\ & 00059 \mathrm{FFF}_{\mathrm{H}} \end{aligned}$	SRAM 8 KB				
0005A000н to 0005FFFFH	-				

MB91310 Series

Address	Register		Block
	+0 +1	+2 +3	
00060000н	$\begin{gathered} \text { FIFOOO [R] } \\ X X X X X X X X X X X X X \end{gathered}$	$\begin{gathered} \text { FIFOOi [W] } \\ \text { XXXXXXXX_XXXXXXXX } \end{gathered}$	USB Function
00060004н	$\begin{gathered} \text { FIFO1 }[\mathrm{R}] \\ \mathrm{XXXXXXXXXXXX} \end{gathered}$	$\begin{gathered} \text { FIFO2 [W] } \\ X X X X X X X X X X X X X X \end{gathered}$	
00060008н	FIFO3 [R] XXXXXXXX_XXXXXXXX	-	
$\begin{gathered} 0006000 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 0006001 \mathrm{~F}_{\mathrm{H}} \end{gathered}$			
00060020н	-	$\begin{gathered} \text { CONT1 [R/W] } \\ \text { XXXXXOXX_XXX00000 } \end{gathered}$	
00060024	CONT2 [R/W] XXXXXXXX_XXX00000	$\begin{gathered} \text { CONT3 [R/W] } \\ \text { XXXXXXXX_XXX00000 } \end{gathered}$	
00060028н	CONT4 [R/W] XXXXXXXX_XXX00000	CONT5 [R/W] XXXXXXXX_XXXX00XX	
0006002CH	CONT6 [R/W] XXXXXXXX_XXXX00XX	$\begin{gathered} \text { CONT7 [R/W] } \\ \text { XXXXXXXX_XXX00000 } \end{gathered}$	
00060030н	$\begin{gathered} \text { CONT8 [R/W] } \\ \text { XXXXXXXX_XXX00000 } \end{gathered}$	CONT9 [R/W] XXXX0000_X000000	
00060034	$\begin{gathered} \text { CONT10 [R/W] } \\ \text { XXXXXXXX_OXXX0000 } \end{gathered}$	$\begin{gathered} \hline \text { TTSIZE [R/W] } \\ \text { 00010001_00010001 } \end{gathered}$	
00060038	TRSIZE [R/W] $00010001 _00010001$	-	
0006003C ${ }_{\text {н }}$			
00060040н	$\begin{gathered} \text { RSIZEO [R] } \\ \text { XXXXXXX_XXXX0000 } \end{gathered}$	-	
00060044	$\begin{gathered} \text { RSIZE1 [R] } \\ \text { XXXXXXXX_X0000000 } \end{gathered}$	-	
$\begin{gathered} \text { 00060048н } \\ \text { to } \\ 0006005 \mathrm{FH}_{\mathrm{H}} \end{gathered}$			
00060060н	-	$\begin{gathered} \text { ST1 [R/W] } \\ \text { XXXXXX00_00000000 } \end{gathered}$	
00060064н	-		
00060068	$\begin{gathered} \mathrm{ST} 2[\mathrm{R}] \\ \text { XXXXXXX_XXX00000 } \end{gathered}$	$\begin{gathered} \text { ST3 [R/W] } \\ \text { XXXXXXXX_XXX00000 } \end{gathered}$	
0006006Cн	$\begin{gathered} \text { ST4 [R/W] } \\ \text { XXXXX000_00000000 } \end{gathered}$	$\begin{gathered} \text { ST5 [R/W] } \\ \text { XXXX0XXX_XX00000000 } \end{gathered}$	

(Continued)

MB91310 Series

Address	Register				Block
	+ 0	+ 1	+ 2	+3	
$\begin{gathered} \text { 00060070н } \\ \text { to } \\ 0006007 \text { н } \end{gathered}$	-				USB Function
0006007Ен	$\begin{gathered} \hline \text { RESET [R/W] } \\ \text { 00000------------ } \end{gathered}$		-		
$\begin{gathered} \hline 00060080_{\mathrm{H}} \\ \text { to } \\ 00077 \mathrm{FFF}_{\mathrm{H}} \end{gathered}$	-				Reserved
00078000н	OSD_VADR [R/W] XXXXXXXX_XXXXXXXX		OSD_CD1 [R/W] XXXXXXXX_XXXXXXXX		OSDC
00078004H	OSD_CD2 [R/W] XXXXXXXX_XXXXXXXX		OSD_RCD1 [R/W] XXXXXXXX_XXXXXXXX		
00078008н	OSD_RCD2 [R/W] XXXXXXXX_XXXXXXXX		OSD_SOC1 [R/W] XXXXXXXX_0000XXXX		
0007800С ${ }_{\text {\% }}$	$\begin{gathered} \text { OSD_SOC2 [R/W] } \\ \text { XXXXXXXX_XXXXXXXX } \end{gathered}$		OSD_VDPC [R/W] XXXXXXXX_XXXXXXXX		
00078010н	OSD_HDPC [R/W] XXXXXXXX_XXXXXXXX		OSD_CVSC [R/W] XXXXXXXX_XXXXXXXX		
00078014H	OSD_SBFCC [R/W] XXXXXXXX_XXXXXXXX		OSD_THCC [R/W] XXXXXXXX_XXXXXXXX		
00078018н	$\begin{gathered} \text { OSD_GFCC [R/W] } \\ \text { XXXXXXXX_XXXXXXXX } \end{gathered}$		$\begin{gathered} \text { OSD_SBCC1[R/W] } \\ \text { XXXXXXXXXXXXXX } \end{gathered}$		
	OSD_SBCC2 [R/W] XXXXXXXXX_XXXXXXXX		OSD_SPCC1 [R/W] XXXXXXXX XXXXXXXX		
00078020н	$\begin{array}{r} \text { OSD } \\ \text { XXXXX } \end{array}$	$\begin{aligned} & \text { R/W] } \\ & \mathrm{XXXXX} \end{aligned}$	$\begin{array}{r} \mathrm{OS} \\ \mathrm{XXXX} \end{array}$	$\begin{aligned} & \text { 3/W] } \\ & \text { KXXX } \end{aligned}$	
00078024	$\begin{array}{r} \text { OSD } \\ X X X X X \end{array}$	$\begin{aligned} & \text { R/W] } \\ & X X X X X \end{aligned}$	$\begin{array}{r} \text { OSD } \\ \text { XXXX } \end{array}$	$\begin{aligned} & \text { Z/W] } \\ & K X X X X \end{aligned}$	
00078028н	$\begin{gathered} \text { OSD } \\ \text { XXXXX } \end{gathered}$	$\begin{aligned} & R / W] \\ & X X X X X \end{aligned}$	$\begin{array}{r} \text { OSD } \\ \text { XXXX } \end{array}$	$\begin{aligned} & \text { R/W] } \\ & K X X X X \end{aligned}$	
0007802CH	$\begin{gathered} \text { OSD } \\ \text { XXXXX } \end{gathered}$	$\begin{aligned} & \mathrm{R} / \mathrm{W}] \\ & \mathrm{XXXXX} \end{aligned}$	$\begin{array}{r} \text { OS } \\ \text { XXXX } \end{array}$	$\begin{aligned} & \text { W] } \\ & \text { XXX00 } \end{aligned}$	
00078030н	$\begin{array}{r} \text { OSI } \\ \mathrm{xxXXX} \end{array}$	$\begin{aligned} & \text { lW] } \\ & \text { XXXXX } \end{aligned}$	$\begin{array}{r} \mathrm{OS} \\ \mathrm{XXXX} \end{array}$	$\begin{aligned} & \mathrm{W}] \\ & \mathrm{KXXXX} \end{aligned}$	
00078034н	$\begin{array}{r} \text { OSL } \\ \mathrm{XXXXX} \end{array}$	WXXXX	$\begin{array}{r} \mathrm{OS} \\ \mathrm{XXXX} \end{array}$	$\begin{aligned} & \mathrm{W}] \\ & \langle X X X X \end{aligned}$	
00078038H	OSD_DPC4 [R/W] XXXXXXXX_XXXXXXXX		OSD_IRC [R/W] XXXXXXXX_XXXXXXXX		

(Continued)

MB91310 Series

(Continued)

Address	Register				Block
	+ 0	+1	+2	+3	
0007803CH	OSD_PLT0 [R/W] XXXXXXXX_XXXXXXXX		OSD_PLT1 [R/W] XXXXXXXX_XXXXXXXX		OSDC
00078040н	OSD_PLT2 [R/W] XXXXXXXX_XXXXXXXX		OSD_PLT3 [R/W] XXXXXXXX_XXXXXXXX		
00078044н	OSD_PLT4 [R/W] XXXXXXXX_XXXXXXXX		OSD_PLT5 [R/W] XXXXXXXX XXXXXXXX		
00078048н	OSD_PLT6 [R/W] XXXXXXXX XXXXXXXX		OSD_PLT7 [R/W] XXXXXXXX XXXXXXXX		
0007804Сн	OSD_PLT8 [R/W]XXXXXXXXX_XXXXXXXX		OSD_PLT9 [R/W]XXXXXXXXX_XXXXXXXX		
00078050н	OSD_PLT10 [R/W] XXXXXXXX_XXXXXXXX		OSD_PLT11 [R/W] XXXXXXXX_XXXXXXXX		
00078054н	OSD_PLT12 [R/W] XXXXXXXX_XXXXXXXX		OSD_PLT13 [R/W] XXXXXXXX_XXXXXXXX		
00078058н	OSD_PLT14 [R/W] XXXXXXXX_XXXXXXXX		OSD_PLT15 [R/W] XXXXXXXX XXXXXXXX		
0007805Сн	OSD_ACT1 [R/W] XXXXXXXX_XXXXXXXX		OSD_ACT2 [R/W] XXXXXXXX_XXXXXXXX		
$\begin{gathered} 00078060 \mathrm{H} \\ \text { to } \\ 0007 \mathrm{FFFFH} \end{gathered}$	-				Reserved

*1: The initial value of the register varies with the reset level. The initial value shown is the one after an INIT level reset.
*2 : The initial value of the register varies with the reset level. The initial value shown is the one after an INIT level reset by the INIT pin.

MB91310 Series

■ INTERRUPT SOURCE, INTERRUPT VECTOR AND INTERRUPT REGISTER ASSIGNMENT

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	RN
	10	16				
Reset	0	00	-	3FCH	000FFFFCH	-
Mode vector	1	01	-	3F8H	000FFFF8\%	-
System reserved	2	02	-	3F4н	000FFFF4н	-
System reserved	3	03	-	3F0H	000FFFFF0н	-
System reserved	4	04	-	3ЕСн	000FFFEC ${ }_{\text {H }}$	-
System reserved	5	05	-	3E8H	000FFFE8н	-
System reserved	6	06	-	3E4н	000FFFE4 ${ }_{\text {н }}$	-
Coprocessor absent trap	7	07	-	3E0H	000FFFE0H	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-
INTE instruction	9	09	-	3D8н	000FFFD8н	-
Instruction break exception	10	0A	-	3D4н	000FFFD4н	-
Operand break trap	11	OB	-	3D0н	000FFFD0н	-
Step trace trap	12	OC	-	3СС ${ }_{\text {H }}$	000FFFCCH	-
NMI request (tool)	13	OD	-	3С8н	000FFFC8\%	-
Undefined instruction exception	14	OE	-	3С4 ${ }_{\text {н }}$	000FFFC4н	-
NMI request	15	OF	15 (Fн) fixed	3С0н	000FFFFC0н	-
External interrupt 0	16	10	ICR00	3ВСн	000FFFBCH	-
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н	-
External interrupt 2	18	12	ICR02	3B4 ${ }_{\text {H }}$	000FFFB4н	-
External interrupt 3	19	13	ICR03	3 BOH	000FFFB0н	-
External interrupt 4 (USB-function)	20	14	ICR04	ЗАСн	000FFFAC ${ }_{\text {н }}$	-
External interrupt 5 (USB-Host)	21	15	ICR05	3A8H	000FFFA8 ${ }_{\text {н }}$	-
External interrupt 6 (OSDC)	22	16	ICR06	3A4н	000FFFA4 ${ }_{\text {н }}$	-
External interrupt 7	23	17	ICR07	3 AOH	000FFFAOH	-
Reload timer 0	24	18	ICR08	$39 \mathrm{CH}_{\mathrm{H}}$	000FFF9C ${ }_{\text {н }}$	8
Reload timer 1	25	19	ICR09	398H	000FFF98н	9
Reload timer 2	26	1A	ICR10	394 ${ }_{\text {H }}$	000FFF94н	10
UART0(Reception completed)	27	1B	ICR11	390н	000FFF90н	0
UART1(Reception completed)	28	1C	ICR12	$38 \mathrm{CH}_{\mathrm{H}}$	000FFF8C ${ }_{\text {н }}$	1
UART2(Reception completed)	29	1D	ICR13	388H	000FFF88н	2
UART0 (RX completed)	30	1E	ICR14	384 H	000FFF84н	3
UART1 (RX completed)	31	1F	ICR15	380H	000FFF80н	4
UART2 (RX completed)	32	20	ICR16	37 CH	000FFF7C ${ }_{\text {н }}$	5

(Continued)

MB91310 Series

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	RN
	10	16				
DMAC0 (end, error)	33	21	ICR17	378	000FFF78 ${ }^{\text {+ }}$	-
DMAC1 (end, error)	34	22	ICR18	374	000FFF74 ${ }_{\text {н }}$	-
DMAC2 (end, error)	35	23	ICR19	370н	000FFF70н	-
DMAC3 (end, error)	36	24	ICR20	$36 \mathrm{C}_{\text {н }}$	$000 \mathrm{FFF6}$ С ${ }_{\text {н }}$	-
DMAC4 (end, error)	37	25	ICR21	368н	000FFF68н	-
A/D	38	26	ICR22	364	000FFF64н	-
PPG0	39	27	ICR23	360н	000FFF60н	-
PPG1	40	28	ICR24	$35 \mathrm{C}_{\text {н }}$	000FFF5CH	-
PPG2	41	29	ICR25	358H	000FFF58н	-
PPG3	42	2A	ICR26	354	000FFF54н	-
PWC	43	2B	ICR27	350н	000FFF50н	-
System reserved	44	2C	ICR28	34 CH	$000 \mathrm{FFF} 4 \mathrm{CH}_{\text {н }}$	-
System reserved	45	2D	ICR29	348 H	000FFF48н	-
Main oscillation stabilization	46	2E	ICR30	344 н	000FFF44	-
Timebase timer overflow	47	2 F	ICR31	340н	000FFF40н	-
System reserved	48	30	ICR32	33 C	000FFF3C	-
Clock timer	49	31	ICR33	338н	000FFF38н	-
${ }^{12} \mathrm{C}$ ch0	50	32	ICR34	334	000FFF34н	-
${ }^{2} \mathrm{C}$ ch1	51	33	ICR35	330н	000FFF30н	-
${ }^{12} \mathrm{C}$ ch2	52	34	ICR36	32 CH	000FFF2C ${ }_{\text {н }}$	-
${ }^{12} \mathrm{C}$ ch3	53	35	ICR37	328н	000FFF28н	-
UART3(Reception completed)	54	36	ICR38	324	000FFF24	-
UART4(Reception completed)	55	37	ICR39	320н	000FFF20н	-
UART3 (RX completed)	56	38	ICR40	$31 \mathrm{C}_{\mathrm{H}}$	$000 \mathrm{FFF} 1 \mathrm{CH}_{\text {н }}$	-
UART4(Reception completed)	57	39	ICR41	318н	000FFF18 ${ }_{\text {н }}$	-
timer0	58	3A	ICR42	314 H	000FFF14	-
timer1	59	3B	ICR43	310 H	000FFF10н	-
timer2	60	3C	ICR44	30 CH	000 FFFOC н $^{\text {¢ }}$	-
timer3	61	3D	ICR45	308н	000FFF08н	-
System reserved	62	3E	ICR46	304 н	000FFF04	-
Delay interrupt source bit	63	3F	ICR47	300н	000FFFOOH	-
System reserved (Used by REALOS)	64	40	-	2FCн	000FFEFCH	-
System reserved (Used by REALOS)	65	41	-	2F8H	000FFEF8н	-
System reserved	66	42	-	2F4H	000FFEF4 ${ }_{\text {H }}$	-

(Continued)

MB91310 Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	Address of TBR default	RN
	10	16				
System reserved	67	43	-	2F0н	000FFEFOH	-
System reserved	68	44	-	2 ECH	000FFEECH	-
System reserved	69	45	-	2Е8н	000FFEE8н	-
System reserved	70	46	-	2E4H	000FFEE4 ${ }_{\text {н }}$	-
System reserved	71	47	-	2Е0н	000FFEEOH	-
System reserved	72	48	-	2 DCH	000FFEDCH	-
System reserved	73	49	-	2D8н	000FFED8	-
System reserved	74	4A	-	2D4 ${ }^{\text {¢ }}$	000FFED4	-
System reserved	75	4B	-	2D0н	000FFEDO	-
System reserved	76	4C	-	2 CCH	000FFECCH	-
System reserved	77	4D	-	2С8	000FFEC8 ${ }_{\text {н }}$	-
System reserved	78	4E	-	2C4H	000FFEC4	-
System reserved	79	4F	-	2 COH	000FFECOH	-
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BCH} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	$\begin{gathered} \text { O00FFEBCH } \\ \text { to } \\ 000 \mathrm{FFCO} \end{gathered}$	-

MB91310 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	Vdot (3.3 V)	Vss -0.5	Vss +4.0	V	
	Vodi (2.5 V)	Vss -0.5	Vss +3.0	V	
Analog power supply voltage	AVcc	Vss -0.5	Vss +4.0	V	
Input voltage	V_{1}	Vss-0.5	$\mathrm{Vcc}+0.5$	V	
Analog pin input voltage	$V_{\text {IA }}$	Vss -0.5	$\mathrm{AVcc}+0.5$	V	
Output voltage	Vo	Vss - 0.5	$\mathrm{Vcc}+0.5$	V	
Storage temperature	Tstg	-40	+ 125	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Operating temperature	Ta	-10	+ 70	${ }^{\circ} \mathrm{C}$	
Power supply voltage	Vdie (3.3 V)	3.00	3.6	V	
	Vdol (2.5 V)	2.30	2.70		
Analog power supply voltage	AV ${ }_{\text {cc }}$	3.00	3.60	V	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91310 Series

3. DC Characteristics

$\left(\mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V}$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DII $\left.=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Value			Unit	Remarks
			Min	Typ	Max		
Power supply	Icc	ROM product during normal operation$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{fcp}=40 \mathrm{MHz} \\ & \mathrm{fcpp}=20 \mathrm{MHz} \\ & \hline \end{aligned}$	-	200	250	mA	MB91F312A Dot clock@90 MHz
				220	270		MB91FV310A Dot clock@90 MHz
	Iccs	$\begin{aligned} & \text { Main sleep mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{fcp}=40 \mathrm{MHz}, \\ & \mathrm{fcpp}=20 \mathrm{MHz} \end{aligned}$	-	150	180	mA	MB91F312A Dot clock PLL STOP
				170	200		MB91FV310A Dot clock PLL STOP
	Iccı	Sub RUN mode $\mathrm{Ta}=+25^{\circ} \mathrm{C},$ fclk $=32 \mathrm{kHz}$	-	800	1500	$\mu \mathrm{A}$	MB91F312A Dot clock PLL stop USB clock stop
				1300	2000		MB91FV310A Dot clock PLL stop USB clock stop
	Icch	Main stop mode$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fclk}=0$	-	70	150	$\mu \mathrm{A}$	MB91F312A
				570	650		MB91FV310A
		$\mathrm{Ta}=+70^{\circ} \mathrm{C}, \mathrm{fclk}=0$	-	500	2000	$\mu \mathrm{A}$	MB91F312A
				1000	2500		MB91FV310A
	Icct	$\begin{aligned} & \text { Clock mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \text { fclk }=32 \mathrm{kHz} \end{aligned}$	-	600	1000	$\mu \mathrm{A}$	MB91F312A Dot clock PLL stop USB clock stop
				1100	1500		$\begin{array}{\|l} \hline \text { MB91FV310A } \\ \text { Dot clock PLL stop } \\ \text { USB clock stop } \end{array}$
H level input voltage	V_{1}	*1	$\mathrm{V} \mathrm{cc} \times 0.8$	-	Vcc	V	
L level input voltage	VIL	$\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V}$, *1	Vss	-	$\mathrm{Vcc} \times 0.2$	V	
		$\mathrm{Vcc}=2.5 \mathrm{~V}$			$\mathrm{Vcc} \times 0.15$	V	
H level output voltage	Vон	$\begin{aligned} & \mathrm{V} \mathrm{DDE}=3.3 \mathrm{~V}, \\ & \mathrm{IOH}=-4 \mathrm{~mA}, * 2 \end{aligned}$	V cc -0.5	-	Vcc	V	
		$\begin{aligned} & \mathrm{VDDE}=2.5 \mathrm{~V}, \\ & \mathrm{IOH}=-4 \mathrm{~mA}, * 3 \end{aligned}$	Vcc - 0.5	-	V cc	V	
L level output voltage	Vol	$\begin{aligned} & V_{\text {DDE }}=3.3 \mathrm{~V}, \\ & \mathrm{loL}=4 \mathrm{~mA}, * 2,{ }^{2} 3 \end{aligned}$	Vss	-	0.4	V	
Input leak current	ILL	$\mathrm{Ta}=+70^{\circ} \mathrm{C}$	-5	-	+5	$\mu \mathrm{A}$	
${ }^{12} \mathrm{C}$ bus switch connection resister	RBS	-	-	-	130	Ω	Between SCL3 and SCL4 Between SDA3 and SDA4

*1 : P0 to P7, DOCKI, HSYNC, YSYNC
*2 : P0 to P7
*3 : B0 to B2, G0 to B2, R0 to R2, VOB1, VOB2, DCK0, FH

MB91310 Series

4. USB

(1) DC Characteristics

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
H level output voltage	Vон	-	$\mathrm{loH}=-100 \mu \mathrm{~A}$	Vdde - 0.2	-	Vdde	V	
Output Level Voltage	VoL	-	loL $=100 \mu \mathrm{~A}$	0	-	0.2	V	
H level output current	Іон	-	Full Speed $\mathrm{V}_{\text {OH }}=\mathrm{V}_{\mathrm{DDE}}-0.4 \mathrm{~V}$	-20	-	-	mA	
			Low Speed $\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DDE}}-0.4 \mathrm{~V}$	-6	-	-		
L level output current	loL	-	Full Speed $\mathrm{VOL}=0.4 \mathrm{~V}$	20	-	-	mA	
			Low Speed $\mathrm{VoL}=0.4 \mathrm{~V}$	6	-	-		
output short circuit current	los	-	-	-	-	300	mA	*1
Input leak current	lız	-	-	-	-	± 5	$\mu \mathrm{A}$	*2

*1 : About the output short-circuit current los
The output short-circuit current IOS is the maximum current that flows when the output pin is connected to VDDE or VSS (within the maximum rating).

3-State Enable "L"

L level

3-State Enable "L"
About the output short-circuit current: This is the short-circuit current per differential output pin on one side. As this USB I/O buffer is a differential output, consider both of the two pins.

MB91310 Series

*2 : About Z leakage current ILz measurement
The input leakage current lız indicates the leakage current that flows when the Vdde or Vss voltage is applied to the bidirectional pin with the USB I/O buffer in a high impedance state.

Monitor the leakage current

3-State Enable "H"

MB91310 Series

(2) DC characteristics

Conforming to the USB Specification Revision 1.1.
$\left(\mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{VDE}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DII $\left.=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
" H " level input voltage (driven)	$\mathrm{V}_{\text {H }}$	2.0	-	V	*1
"L" level input voltage	VIL	-	0.8	V	${ }^{*} 1$
Diffential Input Sensitivity	Voi	0.2	-	V	*2
Differential Common Mode Range	Vсм	0.8	2.5	V	*2
"H" level output voltage (driven)	Vон	2.8	3.6	V	*3
"L" level output voltage	VoL	0.0	0.3	V	*3
External Output Signal Crossover Voltage	V ${ }_{\text {crs }}$	1.3	2.0	V	* 4
Bus Pull-Up Resistor on Upstream Port	RPU	1.425	1.575	k Ω	$1.5 \mathrm{k} \Omega \pm 5 \%$
Bus Pull-Down Resistor on Downstream Port	RPD	1.425	1.575	k Ω	$1.5 \mathrm{k} \Omega \pm 5 \%$
Termination voltage for upstream port pull-up	$\mathrm{V}_{\text {term }}$	3.0	3.6	V	*5

${ }^{*} 1$: About input voltages $\mathrm{V}_{\boldsymbol{H}}$ and V_{IL}
The Single-End-Receiver switching threshold voltage of the USB I/O buffer is set within the range of VIL (Max) $=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{H}}(\mathrm{Min})=2.0 \mathrm{~V}$ (TTL input standard).
Appropriate hysteresis is provided to reduce noise sensitivity.
*2 : About input voltages Voı and Vсм
The Differential-Receiver is used to receive USB differential data signals.
The Differential-Receiver has a differential input sensitivity of 200 mV when the differential data input remains in the range of 0.8 to 2.5 V to the local ground reference level.
The above voltage range is referred to as the common mode input voltage range.

Common mode input voltage(V)

MB91310 Series

*3 : About output voltages Vol and Vон
The output drive capabilities of the driver are 0.3 V or less in Low-State (VoL) (when $1.5 \mathrm{k} \Omega$ is loaded at 3.6 V) and 2.8 V or more in High-State (Vон) (when $15 \mathrm{k} \Omega$ is loaded at the ground).
*4 : About output voltages VCrs
The cross voltage of the external differential output signal ($\mathrm{D}+/ \mathrm{D}-$) of the USB I/O buffer ranges from 1.3 V to 2.0 V .

*5: About termination VTERM
$V_{\text {term }}$ represents the pull-up voltage at the upstream port.

MB91310 Series

5. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DDE}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{DDI}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	fc	X0, X1	-	-	10.135	-	MHz	PLL system (Operation at a maximum internal speed of 40.54 MHz by quadrupling a self-oscillation frequency of 10.135 MHz via PLL)
Internal operating clock frequency	fcp	-	-	2.53	-	40.54	MHz	CPU
	fcpp	-	-	2.53	-	20.27	MHz	Peripheral

(2) Reset
$\left(\mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DDE}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DDI $\left.=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
INIT input time (at power-on)	tintı	$\overline{\text { INIT }}$	-	*	-	ns	
INIT input time (other than at power - on)				tcp $\times 5$	-	ns	
INIT input time (stop recovery time)				*	-	ns	

* : INIT input time (at power-on)

FAR, CERALOCK : $\phi \times 2{ }^{15}$ or greater recommended
Crystal $: \phi \times 2^{21}$ or greater recommended
$\phi:$ Power on $\rightarrow \mathrm{X0} / \mathrm{X} 1$ period $\times 2$

$\overline{\text { INIT }}$

MB91310 Series

(3) UART timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscrc	SCK0 to SCK4	internal shift lock mode	8 tcrcp*	-	ns	
SCK $\downarrow \rightarrow$ SO delay time	tstov	$\begin{aligned} & \text { SCK0 to SCK4 } \\ & \text { SO0 to SO4 } \end{aligned}$		-80	+ 80	ns	
Valid SI \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \text { SCK0 to SCK4 } \\ & \text { SIO to SI4 } \end{aligned}$		100	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	$\begin{aligned} & \text { SCK0 to SCK4 } \\ & \text { SIO to SI4 } \end{aligned}$		60	-	ns	
Serial clock H pulse width	tshsL	SCK0 to SCK4	external shift lock mode	4 tcycp*	-	ns	
Serial clock L pulse width	tsısH	SCK0 to SCK4		4 tcycp*	-	ns	
SCK $\downarrow \rightarrow$ SO delay time	tstov	$\begin{aligned} & \text { SCK0 to SCK4 } \\ & \text { SO0 to SO4 } \end{aligned}$		-	150	ns	
Valid SI \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \text { SCK0 to SCK4 } \\ & \text { SI0 to SI4 } \end{aligned}$		60	-	ns	
SCK $\uparrow \rightarrow$ valid SI hold time	tsH1X	$\begin{aligned} & \text { SCK0 to SCK4 } \\ & \text { SIO to SI4 } \end{aligned}$		60	-	ns	

* : tcycp indicates the peripheral clock cycle time.

Note : AC characteristic in CLK synchronized mode.

MB91310 Series

- Internal shift clock mode

- External shift clock mode

MB91310 Series

(4) Reload timer clock, PPG timer input, and multi-function timer input timings

$$
\left(\mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{\text {DDE }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \text { DDI }=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	$\begin{aligned} & \text { tтww } \\ & \text { ttiwL } \end{aligned}$	TIN0 to TIN2 PPG0 to PPG3 TRG0 to TRG3 TIO to TI3	-	2 tcycp*	-	ns	

*: tcycp indicates the peripheral clock cycle time.

(5) Trigger Input Timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
A/D activation trigger input time	tatrg	ATRG	-	5 tcycp*	-	ns	

* : tcycp indicates the peripheral clock cycle time.

MB91310 Series

(6) USB interface
$\left(\mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{VDE}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{DDI}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Input clock	Fucyc	X0B, X1B	-	-	$48 * 1$	-	MHz	Self-oscillation at a precision of 500 ppm *
		XOB						External input at a precision of 500 ppm *1
Rise Time	tr	UHP/UHM UDP/UDM	Full Speed	4	-	20	ns	*2
		UHP/UHM	Low Speed	75	-	300	ns	*2
Fall Time	tf	UHP/UHM UDP/UDM	Full Speed	4	-	20	ns	*2
		UHP/UHM	Low Speed	75	-	300	ns	*2
Differential Rise and Fall Timing Matching	Tfrfm	UHP/UHM UDP/UDM	Full Speed	90	-	111.11	\%	*2
		UHP/UHM	Low Speed	80	-	125	\%	*2
Driver Output Resistance	Rzdrv	$\begin{aligned} & \hline \text { UDP } \\ & \text { UDM } \end{aligned}$	-	28	-	44	Ω	*3

*1: The AC characteristics of the USB interface conform to the USB Specification Revision 1.1.
*2 : About driver characteristics tr, tf, and Tfrfm
These represent the rise (tr) and fall (tf) time standards of the differential data signal.
These are defined as times between 10% and 90% of the output signal voltage.
For full-speed buffer, the tr/tf ratio is specified to fall within $\pm 10 \%$ to minimize RFI radiation.

MB91310 Series

*3 : About driver characteristic ZDRV
USB full-speed connection is made by the twisted pair cable shielded at a characteristic impedance (Z0) of $90 \Omega \pm 15 \%$. The USB Specification stipulates that the USB driver output impedance be within the range of 28Ω to 44Ω. The USB Specification also stipulates that a discrete serial resistor (Rs) be added for balancing purposes while satisfying the above standards.
The output impedance of the USB I/O buffer in this LSI is about 3Ω to 19Ω.
As the serial resistor Rs, therefore, a 25Ω to 30Ω type (27Ω type recommended) should be added.

Driver output impedance 3Ω to 19Ω
Rs 25Ω to 30Ω (recommended value: 27Ω)

MB91310 Series

(7) Analog RGB

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Analog RGB output delay	tvad	ROUT, GOUT, BOUT	$\begin{aligned} & V_{\text {REF }}=1.1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DDR}}=\mathrm{V}_{\mathrm{DDG}}=\mathrm{V}_{\mathrm{DDB}} \\ & =2.5 \mathrm{~V}, \end{aligned}$	-	5	-	ns	-
Analog RGB output settling time	tvas	ROUT, GOUT, BOUT	$\begin{aligned} & \mathrm{V}_{\text {RO }}=2.7 \mathrm{k} \Omega, \\ & \mathrm{RCOMP}=\mathrm{GCOMP} \\ & =\mathrm{BCOMP}=0.1 \mu \mathrm{~F} \end{aligned}$	-	10	-	ns	-

- Display signal output timing

MB91310 Series

(8) Digital RGB

Vertical sync, horizontal sync, and display output control signal input timings
$\left(\mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DDE}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{VDDI}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
Horizontal sync signal cycle time	thcyc	HSYNC	100 + twh	-	Dot clock	
Horizontal sync signal pulse width	twh	HSYNC	20	-	Dot clock	*1
			-	6	$\mu \mathrm{s}$	
Horizontal sync signal setup time	tohst	HSYNC	4	-	ns	
Horizontal sync signal hold time	tohнס		0	-	ns	
Vertical sync signal setup time	thvst	VSYNC	5	$1 \mathrm{H}^{* 2}-5$	Dot clock	
Vertical sync signal hold time	thvhd		3	-	$\mathrm{H}^{* 2}$	
Input sync signal rise/fall time	$\begin{aligned} & \text { tor } \\ & \text { tDF } \end{aligned}$	HSYNC VSYNC	-	5	ns	

*1: During the horizontal sync signal pulse period, the device stops its internal OSDC operation, disabling writing to the internal VRAM. Therefore, set the horizontal sync signal pulse width and VRAM write cycle to ensure that: horizontal sync signal pulse width < VRAM write cycle.
Precisely, adjust the command issuance interval not to issue command 2 or command 4 (VRAM write command) more than once in the horizontal sync signal pulse with period.
If the above condition is not satisfied, the device may fail writing to VRAM.
*2 : 1 H is assumed to be one horizontal sync signal period.

- Horizontal sync, and display output control signal input timings

MB91310 Series

- Horizontal sync signal input

- Vertical sync signal input timing
- Leading edge of HSYNC

-Trailing edge of HSYNC

MB91310 Series

Display signal timing

$$
\left(\mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{\text {DDE }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{VDDI}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}, \mathrm{VsS}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
Dot clock input cycle time	tıIF	DOCKI	11	90	MHz	*1
Dot clock input pulse width	town	DOCKI	3.5	-	ns	*1
	toiwl		3.5	-	ns	
Dot clock output delay time 1	tpoc	DCKO	3	8	ns	*2
Display signal output delay time I1	tpoli	$\begin{gathered} \text { R2 to R0, } \\ \text { B2 to BO, } \\ \text { G2 to GO, } \\ \text { VOB1, VOB2 } \end{gathered}$	2	8	ns	*2
Display signal output delay time O1	tpDo1	R2 to R0, B2 to B0, G2 to G0, VOB1, VOB2	-4	5	ns	*2

*1 : Input a continuous dot clock signal without a break.

*2 : Output load of 16 pF

- Display signal output timing

MB91310 Series

6. $0.25 \mu \mathrm{~m}$ Technology About the Power-on Sequence for Dual-power-supply Models

- The power supplies must be turned on in the VDDI \rightarrow AVCC, $\mathrm{AVRH} \rightarrow$ VDDE order and off in the VDDE \rightarrow AVCC, AVRH \rightarrow VDDI order.
When VDDI is turned on earlier, the potential difference between VDDI and VDDE must be within 3.6 V .
- Turn on VDDE before turning on analog power supply AVCC and applying the analog signal.

7. Electrical Characteristics for the A/D Converter
($\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DDE}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DDI $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$, $\mathrm{Vss}=A \mathrm{~V}_{\text {ss }}=0 \mathrm{~V}, \mathrm{AV}$ RH $=3.0 \mathrm{~V}$ to 3.6 V)

Parameter	value			Unit	Remarks
	Min	Typ	Max		
Resolution	-	-	10	bit	
Total error*1	- 5.5	-	+ 5.5	LSB	$\mathrm{AVcc}=3.3 \mathrm{~V}$, $\mathrm{AV}_{\text {RH }}=3.3 \mathrm{~V}$ (CPU in sleep mode)
Nonlinear error*1	-3.5	-	+3.5	LSB	
Differential linear erro**	-2.0	-	+2.0	LSB	
Zero transition voltage*1	-4.0	-	+6.0	LSB	
Full transition voltage*1	$\mathrm{AV}_{\text {RH }}-5.5$	-	$\mathrm{AV}_{\mathrm{RH}}+3.0$	LSB	
Conversion time	10°	-	-	$\mu \mathrm{s}$	
Power supply current (analog + digital)	-	3.6	-	mA	
	-	-	5	$\mu \mathrm{A}$	Stop converting
Reference power supply current (between AVRH and AVRL)	-	470	-	$\mu \mathrm{A}$	$\mathrm{AV}_{\text {RH }}=3.0 \mathrm{~V}, \mathrm{AV}$ RL $=0.0 \mathrm{~V}$
	-	-	10	$\mu \mathrm{A}$	Stop converting
Analog input capacitance	-	40	-	pF	
Interchannel disparity	-	-	4	LSB	

*1 : Measured in the CPU sleep state
*2 : Depends on the clock cycle of the clock signal supplied to peripheral resources.

Comparator

Ron $=$ approx. 300Ω
Ron2 $=$ approx. 60Ω
$\mathrm{C}_{0}=$ approx. 40 pF
$\mathrm{C}_{1}=$ approx. 4 pF

MB91310 Series

- ORDERING INFORMATION

Part number	Package	Remarks
MB91F312APFV-1xx-BND-E1	144-pin plastic LQFP (FPT-144P-M08)	Lead Free Package
MB91FV310APFV-ES	44-pin plastic LQFP (FPT-144P-M08)	For development tools

MB91310 Series

PACKAGE DIMENSION

144-pin plastic LQFP
(FPT-144P-M08)

Note 1) * : Values do not include resin protrusion.
Resin protrusion is +0.25 (.010) Max (each side) .
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIMITED F144019S-C-4.6
Dimensions in mm (inches)
Note: The values in parentheses are reference values.

MB91310 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

