Voltage Transducer LV 200-AW/2

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

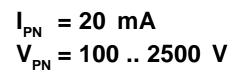
Electrical data

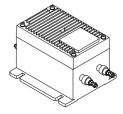
I _{PN}	Primary nominal r.m.s. current		20		mA
I _P	Primary current, measuring range		0 ± 40		mA
R _M	Measuring resistance		$\mathbf{R}_{_{\mathrm{Mmin}}}$	$\mathbf{R}_{_{\mathrm{Mmax}}}$	
	with ± 15 V	@ ± 20 mA _{max}	0	90	Ω
		@ ± 40 mA _{max}	0	25	Ω
	with ± 24 V	@ ± 20 mA _{max}	60	170	Ω
		$@ \pm 40 \text{ mA}_{max}$	60	65	Ω
I _{sn}	Secondary nominal r.m.s. current		100		mA
	Secondary current @ I _{P max}		200		mA
I _s K _N	Conversion ratio		10000 :	2000	
Vc	Supply voltage (± 10 %)		± 15	24	V
I _c	Current consumption		30(@±2	24V)+ I s	mA
Ňď	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾	0	kV
ŭ	-		1 ²⁾		kV
V_	R.m.s. voltage for partial discharges extinction @ 10 pC		2.5		kV

Accuracy - Dynamic performance data

Х _с е	Overall Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ Linearity		0.5 % 0.1 %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_o -	25°C + 70°C ±	yp Max ± 0.3 mA 0.4 ± 0.7 mA
t _r	Response time $^{\scriptscriptstyle 3)}$ @ 90 % of $\boldsymbol{V}_{P\text{max}}$	20) 100 µs

General data


T _A	Ambient operating temperature	- 25 + 70	°C
Ts	Ambient storage temperature	- 40 + 85	°C
R _P	Primary coil resistance @ T _A = 25°C	420	Ω
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	40	Ω
m	Mass	1.6	kg
	Standards 4)	EN 50178	


Notes : ¹⁾ Between primary and secondary + shield

²⁾ Between secondary and shield

 $^{3)}$ R $_{_1}$ = 50 k Ω (L/R constant, produced by the resistance and inductance of the primary circuit)

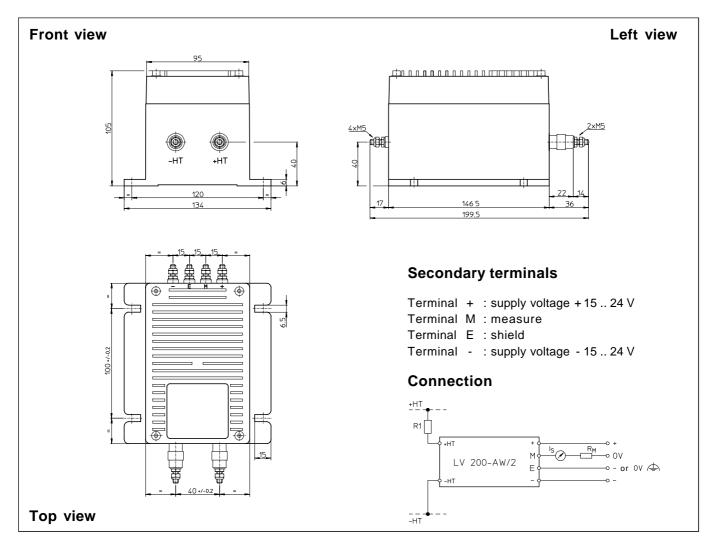
⁴⁾ A list of corresponding tests is available

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Accessible electronic circuit
- Shield between primary and secondary circuit.

Principle of use

 For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer.


Advantages

- Excellent accuracy
- · Very good linearity
- Low thermal drift
- High immunity to external interference

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Dimensions LV 200-AW/2 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Fastening torque
- \pm 0.5 mm 4 holes \oslash 6.5 mm M5 threaded studs M5 threaded studs 2.2 Nm or 1.62 Lb - Ft.

Remarks

- I_s is positive when V_P is applied on terminal +HT.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

Instructions for use of the voltage transducer model LV 200-AW/2

Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 20 mA.

Example: Voltage to be measured $\mathbf{V}_{PN} = 1000 \text{ V}$ b) $\mathbf{R}_1 = 50 \text{ k}\Omega/40 \text{ W}, \mathbf{I}_P = 20 \text{ mA}$ b) $\mathbf{R}_1 = 200 \text{ k}\Omega/10 \text{ W}, \mathbf{I}_P = 5 \text{ mA}$ Additional statements of the second statement of the secon

Accuracy = ± 0.5 % of **V**_{PN} (@ **T**_A = +25°C) Accuracy = ± 2.0 % of **V**_{PN} (@ **T**_A = +25°C)

Operating range (recommended) : taking into account the resistance of the primary windings (which must remain low compared to $\mathbf{R}_{1,}$ in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 100 to 2500 V.