Note : ¹⁾ A list of corresponding tests is available

Voltage Transducer LV 100-50

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

CE

V _{PN} V _P I _{PN} R _M	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		50 0 ± 7 200 R_{M min}	5 R _{Mmax}	V V mA
	with \pm 15 V	@ ± 50 V _{max} @ ± 75 V _{max}	0 0	170 90	Ω Ω
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		50 50 V / 9	50 mA	mA
V _c	Supply voltage (± 5 %	b)	± 15		V
I _c V _d	Current consumption R.m.s. voltage for AC	isolation test, 50 Hz, 1 mn	10 + I _s 6	i	mA kV

Accuracy - Dynamic performance data

Х _G €_	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
l _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	0°C + 70°C	Typ	Max	mΑ
I _{ot}	Thermal drift of I_o		± 0.2	± 0.2	mA
t _r	Response time @ 90 % of $V_{p_{max}}$		40	± 0.3	μs

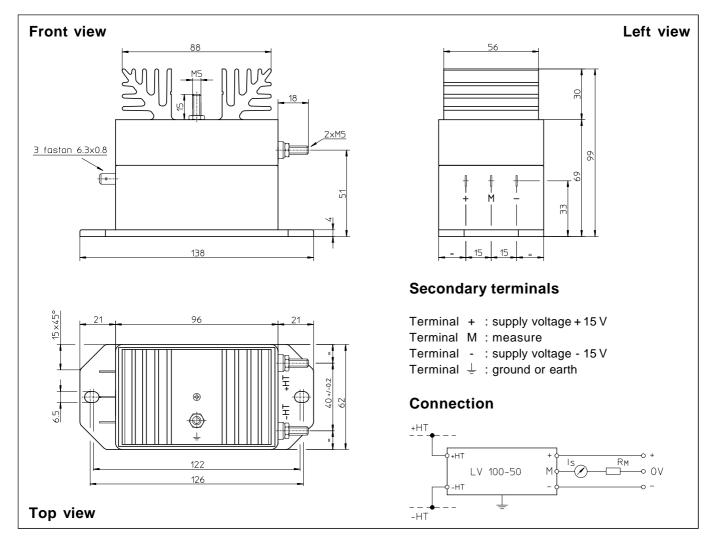
General data

T _A T _S N	Ambient operating temperature Ambient storage temperature Turns ratio	0 + 70 - 25 + 85 500 : 2000	°C °C
Р	Total primary power loss	10	W
R,	Primary resistance @ $T_{a} = 25^{\circ}C$	0.25	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g
	Standards ¹⁾	EN 50178	

 $V_{PN} = 50 V$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor **R**₁ incorporated into the housing.


Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Dimensions LV 100-50 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque

± 0.3 mm

2 holes \emptyset 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud

2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.