www.lem.com

Voltage Transducer LV 100-1600

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$\mathbf{V}_{_{\mathrm{PN}}}$	Primary nominal r.m.s. voltage		1600		V	
V _P	Primary voltage, measuring range		0±2	2400	V	
I _{PN}	Primary nominal r.m.s. current		6.25		mΑ	
R _M	Measuring resistance		$\mathbf{R}_{_{Mmin}}$	R _{Mmax}	c	
	with ± 15 V	@ ± 1600 V _{max}	0	170	Ω	
		@ ± 2400 V _{max}	0	90	Ω	
I _{sn}	Secondary nominal r.m.s. current		50		mA	
K _N	Conversion ratio		1600 V / 50 mA			
Vc	Supply voltage (± 5 %)		± 15		V	
I _c	Current consumption		10 + I _s	3	mΑ	
Ň,	R.m.s. voltage for AC isolation test. 50 Hz. 1 mn		6	-	kV	

Accuracy - Dynamic performance data

Х _G €_	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	0°C + 70°C	Тур	Max	mΑ
I _{o⊤}	Thermal drift of I_o		± 0.2	± 0.2	mA
t _r	Response time @ 90 % of $V_{P \max}$		130	± 0.3	μs

General data

-	Archiest exerting terms areture	070	•
T _A	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	16000 : 2000	
Р	Total primary power loss	10	W
R ₁	Primary resistance @ $T_{A} = 25^{\circ}C$	256	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g
	Standards ¹⁾	EN 50178	

Features

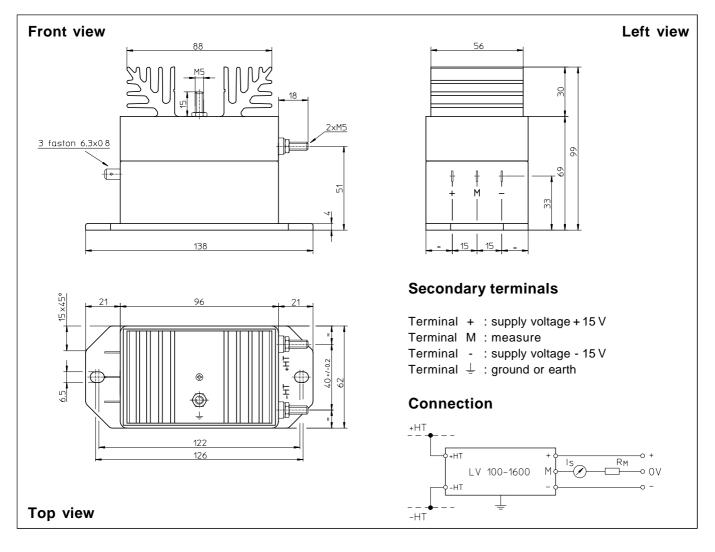
- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor **R**₁ incorporated into the housing.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.



<u>Note</u>: ¹⁾ A list of corresponding tests is available

Dimensions LV 100-1600 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque

± 0.3 mm

2 holes \emptyset 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud

2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.