

FEATURES

- ♦ 26.5 GHz to 29.5 GHz Frequency Band
- ♦ +22 dBm Output Power at 1dB Compression
- ♦ 19 dB Gain
- ♦ +5 V Dual Bias Supply

DESCRIPTION AND APPLICATIONS

The LMA442 is a medium power pHEMT amplifier that operates from 26.5 to 29.5 GHz. This 3-stage amplifier provides 19 dB linear power gain with 1-dB gain compression power output of greater than +22 dBm. The LMA442 is designed for LMDS/LMCS applications. Ground is provided to the circuitry through vias to the backside metallization.

ELECTRICAL SPECIFICATIONS @ T_{Ambient} = 25°C

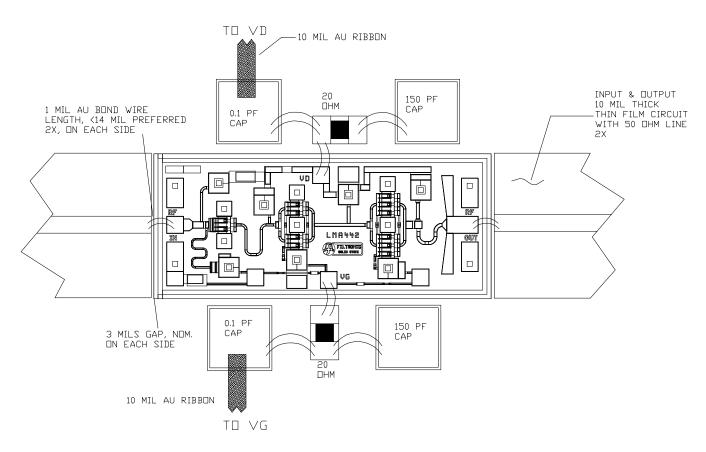
 $(V_{DD} = +5.0V,\, Z_{IN} = Z_{OUT} = 50\Omega)$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Frequency Band	F		26.5		29.5	GHz
Power at 1-dB Compression	P-1dB	75% I _{DSS}	21	22		dBm
Power at Saturation	P _{SAT}	75% I _{DSS}	23	24		dBm
Small Signal Gain	S ₂₁	75% I _{DSS}	18	19		dB
Small Signal Gain Flatness	ΔS_{21}			±1	±2	dB
Input Return Loss	S ₁₁		-8.5	-10		dB
Output Return Loss	S ₂₂		-7.5	-10		dB
Reverse Isolation	S ₁₂		-30	-40		dB
Saturated Drain Current	I_{DSS}		250	350	450	mA

ABSOLUTE MAXIMUM RATINGS

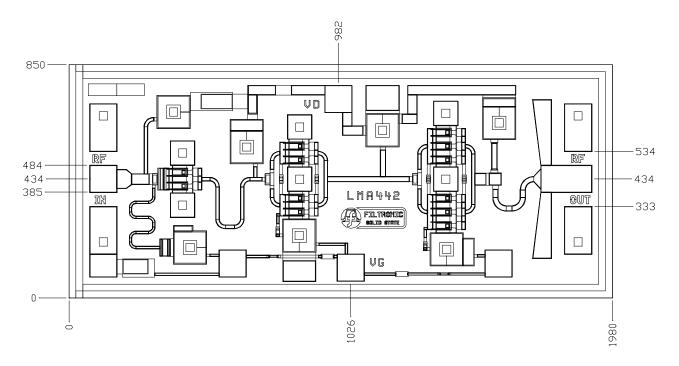
Parameter	Symbol	Test Conditions	Min	Max	Units
Drain Voltage	V_{D}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		6	V
Operating Current	I_{OP}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		495	mA
RF Input Power	P_{IN}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		12	dBm
Total Power Dissipation	P _{TOT}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		4	W
Channel Operating Temperature	T_{CH}	$T_{Ambient} = 22 \pm 3 ^{\circ}C$		150	°C
Storage Temperature	T _{STG}	_	-65	165	°C
Maximum Assembly Temperature (1 min. max.)	T_{MAX}	_		300	°C

Notes:


- Operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.
- Recommended Continuous Operating Limits should be observed for reliable device operation.
- Power Dissipation defined as: $P_{TOT} \equiv (P_{DC} + P_{IN}) P_{OUT}$, where P_{DC} : DC Bias Power

P_{DC}: DC Bias Power P_{IN}: RF Input Power P_{OUT}: RF Output Power

This GaAs MMIC is susceptible to damage from Electrostatic Discharge. Proper precautions should be used when handling these
devices.


ASSEMBLY DRAWING

- Recommended lead bond technique is thermocompression wedge bonding with 0.001" (25μm) diameter wire. The bond tool force shall be 35-38 gram. Bonding stage temperature shall be 230-240°C, heated tool (150-160°C) is recommended. Ultrasonic bonding is not recommended.
- The recommended die attach is Ablebond silver epoxy, the stabilize bake temperature is set at 150°C for 45 minutes.
- Bond on bond or stitch bond acceptable.
- Conductor over conductor acceptable. Conductors must not short.

MECHANICAL OUTLINE

Notes:

- All units are in microns (µm).
- All bond pads are 100 X 100 µm².
- Bias pad (V_{DD}) size is 100 X 121.5 μ m².
- Unless otherwise specified.

HANDLING PRECAUTIONS

To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. These devices should be treated as Class 1A (0-500 V). Further information on ESD control measures can be found in MIL-STD-1686 and MIL-HDBK-263.

All information and specifications are subject to change without notice.