LM124W-LM224W-LM324W

Low Power Quad Operational Amplifiers

■ Wide gain bandwidth: 1.3 MHz
■ Input common-mode voltage range includes ground
■ Large voltage gain: 100 dB
■ Very low supply current/ampli: $375 \mu \mathrm{~A}$
■ Low input bias current: 20 nA
■ Low input offset voltage: 3 mV max.

- Low input offset current: 2 nA

■ Wide power supply range:
Single supply: +3 V to +30 V
Dual supplies: $\pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

Description

These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages.

Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

All the pins are protected against electrostatic discharges up to 2000V (as a consequence, the input voltages must not exceed the magnitude of $\mathrm{V}_{\mathrm{CC}}{ }^{+}$or $\mathrm{V}_{\mathrm{CC}}{ }^{-}$.)

Order Codes

Part Number	Temperature Range	Package	Packaging
LM124WN	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	DIP	Tube
LM124WD/WDT		SO	Tube or Tape \& Reel
LM224WN	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	DIP	Tube
LM224WD/WDT		SO	Tube or Tape \& Reel
LM224WPT		TSSOP (Thin Shrink Outline Package)	Tape \& Reel
LM324WN	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	DIP	Tube
LM324WD/WDT		SO	Tube or Tape \& Reel
LM324WPT		TSSOP (Thin Shrink Outline Package)	Tape \& Reel

June 2005	Rev 2 $1 / 16$

1 Absolute Maximum Ratings

Table 1. 15Key parameters and their absolute maximum ratings

Symbol	Parameter	LM124W	LM224W	LM324W	Unit
VCC	Supply voltage	± 16 or 32			V
Vi	Input Voltage	-0.3 to Vcc +0.3			V
$V_{\text {id }}$	Differential Input Voltage ${ }^{(1)}$	-0.3 to Vcc +0.3			V
$\mathrm{P}_{\text {tot }}$	Power Dissipation N Suffix D Suffix	500	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	mW
	Output Short-circuit Duration ${ }^{(2)}$	Infinite			
$\mathrm{I}_{\text {in }}$	Input Current ${ }^{(3)}$	50			mA
$\mathrm{T}_{\text {oper }}$	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150			${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal Resistance Junction to Ambient SO14 TSSOP14 DIP14	$\begin{gathered} 103 \\ 100 \\ 66 \end{gathered}$			${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	HBM: Human Body Model ${ }^{(4)}$	700			V
	MM: Machine Model ${ }^{(5)}$	100			V
	CDM: Charged Device Model	1.5			kV

1. Either or both input voltages must not exceed the magnitude of $\mathrm{V}_{\mathrm{CC}}{ }^{+}$or $\mathrm{V}_{\mathrm{CC}}{ }^{-}$.
2. Short-circuits from the output to VCC can cause excessive heating if $\mathrm{V}_{C C}>15 \mathrm{~V}$. The maximum output current is approximately 40 mA independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.
3. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. this transistor action can cause the output voltages of the op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative.
This is not destructive and normal output will set up again for input voltage higher than -0.3 V .
4. Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor into pin of device.
5. Machine model ESD, a 200 pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor $<5 \Omega$), into pin to pin of device.

2 Pin \& Schematic Diagram

Figure 1. Pin connections (top view)

Figure 2. Schematic diagram (1/4 LM124W)

3 Electrical Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	$\begin{aligned} & \text { Input Offset Voltage }- \text { note }^{(1)} \\ & \mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		2	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	mV
l_{io}	$\begin{aligned} & \text { Input Offset Current } \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \leq T_{\text {amb }} \leq T_{\text {max }} \end{aligned}$		2	$\begin{aligned} & 20 \\ & 40 \end{aligned}$	nA
$\mathrm{l}_{\text {ib }}$	$\begin{aligned} & \text { Input Bias Current - note } \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \leq T_{\text {amb }} \leq T_{\max } \end{aligned}$		20	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	nA
A_{vd}	Large Signal Voltage Gain $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}{ }^{+}++15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V} \text { to } 11.4 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	100		V/mV
SVR	Supply Voltage Rejection Ratio ($\mathrm{R}_{\mathrm{s}} \leq 10 \mathrm{k} \Omega$) $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}{ }^{+}=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	110		dB
I_{CC}	Supply Current, all Amp, no load $\begin{array}{ll} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ \mathrm{~V}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} & \mathrm{V}_{\mathrm{CC}}=+30 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=+30 \mathrm{~V} \end{array}$		$\begin{aligned} & 0.7 \\ & 1.5 \\ & 0.8 \\ & 1.5 \end{aligned}$	$\begin{gathered} 1.2 \\ 3 \\ 1.2 \\ 3 \end{gathered}$	mA
$\mathrm{V}_{\mathrm{icm}}$	Input Common Mode Voltage Range $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+30 \mathrm{~V}-\text { note }^{(3)} \\ & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 1.5 \\ \mathrm{~V}_{\mathrm{CC}}- \\ 2 \end{gathered}$	V
CMR	$\begin{aligned} & \text { Common Mode Rejection Ratio }\left(R_{s} \leq 10 \mathrm{k} \Omega\right) \\ & T_{\text {amb }}=+25^{\circ} \mathrm{C} \\ & T_{\min } \leq T_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	80		dB
$\mathrm{I}_{\text {source }}$	$\begin{aligned} & \text { Output Current Source }\left(\mathrm{V}_{\text {id }}=+1 \mathrm{~V}\right) \\ & \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{o}}=+2 \mathrm{~V} \end{aligned}$	20	40	70	mA
$\mathrm{I}_{\text {sink }}$	$\begin{aligned} & \hline \text { Output Sink Current }\left(\mathrm{V}_{\text {id }}=-1 \mathrm{~V}\right) \\ & \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=+2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=+0.2 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 20 \\ & 50 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$

Table 2. $\quad \mathrm{V}_{\mathrm{CC}}{ }^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}{ }^{-}=\mathrm{Ground}, \mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{OH}		$\begin{gathered} 26 \\ 26 \\ 27 \\ 27 \\ \\ 3.5 \\ 3 \end{gathered}$	$\begin{aligned} & 27 \\ & 28 \end{aligned}$		V
VOL	Low Level Output Voltage ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$) $\begin{aligned} & T_{a m b}=+25^{\circ} \mathrm{C} \\ & T_{\min } \leq T_{\text {amb }} \leq T_{\max } \end{aligned}$		5	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	mV
SR	Slew Rate $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{i}}=0.5$ to $3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, unity Gain		0.4		V/us
GBP	Gain Bandwidth Product $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}, \mathrm{~V}_{\text {in }}=10 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		1.3		MHz
THD	Total Harmonic Distortion: $f=1 \mathrm{kHz}, A_{v}=20 \mathrm{~dB}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=$ $2 \mathrm{~V}_{\mathrm{pp}}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$		0.015		\%
e_{n}	Equivalent Input Noise Voltage $f=1 \mathrm{kHz}, R_{S}=100 \Omega, V_{C C}=30 \mathrm{~V}$		40		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
$D V_{\text {io }}$	Input Offset Voltage Drift		7	30	$\begin{aligned} & \mu \mathrm{V} / \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{DI}_{\text {lio }}$	Input Offset Current Drift		10	200	$\begin{aligned} & \mathrm{pA} / \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{V}_{01} / \mathrm{V}_{02}$	Channel Separation - note ${ }^{(4)} 1 \mathrm{kHz} \leq \mathrm{f} \leq 20 \mathrm{kHZ}$		120		dB

1. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
2. $\mathrm{V}_{\mathrm{o}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, 5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}{ }^{+}<30 \mathrm{~V}, 0<\mathrm{V}_{\mathrm{ic}}<\mathrm{V}_{\mathrm{CC}}{ }^{+}-1.5 \mathrm{~V}$
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V . The upper end of the common-mode voltage range is $\mathrm{V}_{\mathrm{CC}}{ }^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
4. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.
Table 3. $\mathrm{V}_{\mathrm{cc}}{ }^{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}{ }^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Conditions	Value	Unit
V_{io}		0	mV
A_{vd}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	100	$\mathrm{~V} / \mathrm{mV}$
I_{cc}	No load, per amplifier	350	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{icm}}$		$-15 \mathrm{to}+13.5$	V
$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\left(\mathrm{V}_{\mathrm{CC}}{ }^{+}=15 \mathrm{~V}\right)$	+13.5	V
$\mathrm{~V}_{\mathrm{OL}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	5	mV
I_{os}	$\mathrm{V}_{\mathrm{O}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}$	+40	mA
GBP	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	1.3	MHz
SR	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	0.4	$\mathrm{~V} / \mu \mathrm{s}$

Figure 3. Input bias current vs. ambient temperature

Figure 5. Input voltage range

Figure 4. Current limiting

Figure 6. Supply current

Figure 7. Gain bandwidth product

Figure 8. Common mode rejection ratio

Figure 9. Electrical curves

Figure 10. Input current

Figure 12. Power supply \& common mode rejection ratio

Figure 11. Large signal voltage gain

Figure 13. Voltage gain

4 Typical Single - Supply Applications

Figure 14. AC coupled inverting amplifier

Figure 15. High input Z adjustable gaind DC instrumentation amplifier

$$
\text { if } \mathrm{R} 1=\mathrm{R} 5 \text { and } \mathrm{R} 3=\mathrm{R} 4=\mathrm{R} 6=\mathrm{R} 7
$$

$e_{0}=\left[1+\frac{2 R_{1}}{R_{2}}\right]\left(e_{2}-e_{1}\right)$
As shown $e_{0}=101\left(e_{2}-e_{1}\right)$.

Figure 16. AC coupled non inverting amplifier

Figure 17. DC summing amplifier

Figure 19. Low drift peak detector
$e_{0}=e_{1}+e_{2}-e_{3}-e_{4}$
Where $\left(e_{1}+e^{2}\right)$
Where $\left(e_{1}+e_{2}\right) \geq\left(e_{3}+e_{4}\right)$
to keep $\mathrm{e}_{0} \geq 0 \mathrm{~V}$

e_{4})
\qquad

Figure 20. Activer bandpass filter
Figure 21. High input Z, DC differential amplifier

Figure 22. Using symmetrical amplifiers to reduce input current (general concept)

5 Macromodels

Note: \quad Note: Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.

A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product.

Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way.

```
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM124 1 3 2 4 5 (analog)
************************************************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
```

```
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
```


6 Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

6.1 DIP14 Package

6.2 SO-14 Package

SO-14 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.2	0.003		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.68			0.026
S	$8^{\circ} \text { (max.) }$					

6.3 TSSOP14 Package

TSSOP14 MECHANICAL DATA						
DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
PIN 1 IDE		D	$7=\frac{1}{c}$			

7 Revision History

Date	Revision	Changes
Sept. 2003	1	First Release
June 2005	3	ESD protection inserted in Table 1 on page 2

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

