Ultra-Low $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$
 IGBT with Diode

Combi Pack		Maximum Ratings	
Symbol	Test Conditions		
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	600	V
$\mathrm{V}_{\text {cGr }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	600	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEM }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	76	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{c}}=90^{\circ} \mathrm{C}$	38	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	152	A
$\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VV}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=10 \Omega \\ & \text { Clamped inductive load, } \mathrm{L}=100 \mu \mathrm{H} \end{aligned}$	$\begin{array}{r} \mathrm{I}_{\mathrm{CM}}=76 \\ @ 0.8 \mathrm{~V}_{\text {CES }} \\ \hline \end{array}$	A
P_{c}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	200	w
TJ		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
T_{Jm}		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
M ${ }_{\text {d }}$	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		6	g
Maximum 1.6 mm (0.	ad temperature for soldering 2 in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. typ. $^{\text {ty }}$ max.			
$B V_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=750 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	600			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$	2.5		5.5	V
$I_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		500 8	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$			1.8	V

TO-247 AD

G = Gate, $\mathrm{E}=$ Emitter,

C = Collector, TAB = Collector

Features

- International standard package JEDEC TO-247 AD
- IGBT and anti-parallel FRED in one package
- 2nd generation $\mathrm{HDMOS}^{T M}$ process
- Low $\mathrm{V}_{\mathrm{CE}(\text { sat })}$
- for minimum on-state conduction losses
- MOS Gate turn-on
- drive simplicity
- Fast Recovery Epitaxial Diode (FRED)
- soft recovery with low $I_{\text {RM }}$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Space savings (two devices in one package)
- Easy to mount with 1 screw (isolated mounting screw hole)
- Reduces assembly time and cost
- High power density

Symbol	Test Conditions Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified) min. typ. max.		
$\mathrm{g}_{\text {Is }}$	$I_{C}=I_{\text {C90 }} ; \mathrm{V}_{\text {CE }}=10 \mathrm{~V}$, Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$	20	S
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\int \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{r} 2500 \\ 270 \\ 70 \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	\} $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {c90 }}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{~V}_{\text {CES }}$	$\begin{array}{r} 125 \\ 23 \\ 50 \end{array}$	$\begin{array}{rl} 150 & \mathrm{nC} \\ 35 & \mathrm{nC} \\ 75 & \mathrm{nC} \end{array}$
$\begin{aligned} & t_{\mathrm{d}(0 n)} \\ & t_{t_{i \mathrm{i}}} \\ & t_{\mathrm{d}(\mathrm{fft})} \\ & t_{\mathrm{ti}} \\ & E_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{Cog}}, \mathrm{~V}_{\text {GE }}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{VV}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=10 \Omega \end{aligned}$ Remarks: Switching times may increase for V_{CE} (Clamp) $>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}	$\begin{array}{r} 30 \\ 150 \\ 600 \\ 500 \\ 9 \end{array}$	$\begin{array}{rl} 1200 & \mathrm{~ns} \\ 700 & \mathrm{~ns} \\ 15 & \mathrm{~mJ} \end{array}$
$t_{\text {d(on) }}$ $t_{\text {ti }}$ $E_{\text {on }}$ $t_{\text {doft }}$ $t_{\text {tiif }}$ $E_{\text {off }}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=10 \Omega \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\text {CE }}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}	$\begin{array}{r} 40 \\ 160 \\ 1 \\ 800 \\ 1000 \\ 15 \end{array}$	ns
$\begin{aligned} & \mathbf{R}_{\mathrm{truc}} \\ & \mathbf{R}_{\mathrm{trck}} \end{aligned}$		0.25	$\begin{array}{r} 0.62 \mathrm{~K} / \mathrm{W} \\ \mathrm{~K} / \mathrm{W} \end{array}$

Reverse Diode (FRED)

Characteristic Values

Symbol	($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)		
	Test Conditions min.	typ.	max.
V_{F}	$I_{F}=I_{c 90}, V_{G E}=0 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\mathrm{d} \leq 2 \%$		1.6
		$\begin{array}{r} 10 \\ 150 \\ 35 \end{array}$	$\begin{array}{cc} 15 & \text { A } \\ & \text { ns } \\ 50 & \text { ns } \end{array}$
$\mathrm{R}_{\text {thuc }}$			$1 \mathrm{~K} / \mathrm{W}$

