ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER ## GENERAL DESCRIPTION The ICS8422004I-01 is a 4 output LVHSTL Synthesizer optimized to generate Ethernet reference clock frequencies and is a member of the HiPerClocks™ family of high performance clock solutions from ICS. Using a 25MHz 18pF parallel resonant crystal, the following frequencies can be generated based on the 2 frequency select pins (F_SEL[1:0]): 156.25MHz, 125MHz and 62.5MHz. The ICS8422004I-01 uses ICS' 3rd generation low phase noise VCO technology and can achieve 1ps or lower typical rms phase jitter, easily meeting Ethernet jitter requirements. The ICS8422004I-01 is packaged in a small 24-pin TSSOP package. #### **F**EATURES - Four LVHSTL outputs (VOHmax = 1.2V) - Selectable crystal oscillator interface or LVCMOS/LVTTL single-ended input - Supports the following output frequencies: 156.25MHz, 125MHz, 62.5MHz - VCO range: 560MHz 680MHz - RMS phase jitter @ 156.25MHz, using a 25MHz crystal (1.875MHz - 20MHz): 0.44ps (typical) - Power supply modes: Core/Output 3.3V/1.8V 2.5V/1.8V - -40°C to 85°C ambient operating temperature - Available in both standard and lead-free RoHS-compliant packages #### FREQUENCY SELECT FUNCTION TABLE | | | | | | Output | | | |--------|--------|--------------------|--------------------|----------------------|---------------------------|--|------| | F_SEL1 | F_SEL0 | M Divider
Value | N Divider
Value | M/N
Divider Value | Frequency
(25MHz Ref.) | | | | 0 | 0 | 25 | 4 | 6.25 | 156.25 | | | | 0 | 1 | 25 | 5 | 5 | 125 | | | | 1 | 0 | 25 | 10 2.5 | | 10 2.5 | | 62.5 | | 1 | 1 | 25 | not used | | not used | | | ### PIN ASSIGNMENT ## ICS8422004I-01 24-LeadTSSOP 4.40mm x 7.8mm x 0.92mm package body **G Package** - Q0 Top View ## **BLOCK DIAGRAM** The Preliminary Information presented herein represents a product in prototyping or pre-production. The noted characteristics are based on initial product characterization. Integrated Circuit Systems, Incorporated (ICS) reserves the right to change any circuitry or specifications without notice. # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER #### TABLE 1. PIN DESCRIPTIONS | Number | Name | Ty | /pe | Description | |--------|------------------------------|--------|----------|---| | 1, 2 | nQ1, Q1 | Output | | Differential output pair. LVHSTL interface levels. | | 3, 22 | $V_{\scriptscriptstyle DDO}$ | Power | | Output supply pins. | | 4, 5 | Q0, nQ0 | Ouput | | Differential output pair. LVHSTL interface levels. | | 6 | MR | Input | Pulldown | Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the true outputs Qx to go low and the inverted outputs nQx to go high. When logic LOW, the internal dividers and the outputs are enabled. LVCMOS/LVTTL interface levels. | | 7 | nPLL_SEL | Input | Pulldown | Selects between the PLL and TEST_CLK as input to the dividers. When LOW, selects PLL (PLL Enable). When HIGH, deselects the reference clock (PLL Bypass). LVCMOS/LVTTL interface levels. | | 8, 18 | nc | Unused | | No connect. | | 9 | V _{DDA} | Power | | Analog supply pin. | | 10, 12 | F_SEL0,
F_SEL1 | Input | Pulldown | Frequency select pins. LVCMOS/LVTTL interface levels. | | 11 | $V_{_{\mathrm{DD}}}$ | Power | | Core supply pin. | | 13, 14 | XTAL_OUT,
XTAL_IN | Input | | Parallel resonant crystal interface. XTAL_OUT is the output, XTAL_IN is the input. | | 15, 19 | GND | Power | | Power supply ground. | | 16 | TEST_CLK | Input | Pulldown | LVCMOS/LVTTL clock input. | | 17 | nXTAL_SEL | Input | Pulldown | Selects between crystal or TEST_CLK inputs as the the PLL Reference source. Selects XTAL inputs when LOW. Selects TEST_CLK when HIGH. LVCMOS/LVTTL interface levels. | | 20, 21 | nQ3, Q3 | Output | | Differential output pair. LVHSTL interface levels. | | 23, 24 | Q2, nQ2 | Output | | Differential output pair. LVHSTL interface levels. | NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values. #### TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | ## ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DD} 4.6V Inputs, V_{I} -0.5V to V_{DD} + 0.5V Outputs, I_o Continuous Current 50mA Surge Current 100mA Package Thermal Impedance, θ_{JA} 70°C/W (0 mps) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 3A. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V_{DDA} | Analog Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDO} | Output Supply Voltage | | 1.6 | 1.8 | 2.0 | V | | I _{DD} | Power Supply Current | | | 90 | | mA | | I _{DDA} | Analog Supply Current | | | 10 | | mA | | I _{DDO} | Output Supply Current | No Load | | 0 | | mA | Table 3B. Power Supply DC Characteristics, $V_{DD} = V_{DDA} = 2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | V _{DDA} | Analog Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | V _{DDO} | Output Supply Voltage | | 1.6 | 1.8 | 2.0 | V | | I _{DD} | Power Supply Current | | | 80 | | mA | | I _{DDA} | Analog Supply Current | | | 10 | | mA | | I _{DDO} | Output Supply Current | No Load | | 0 | | mA | Table 3C. LVCMOS / LVTTL DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, $T_A = -40^{\circ}\text{C}$ to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------|---|--|---------|---------|-----------------------|-------| | \/ | Input High Vol | togo | $V_{DD} = 3.3V$ | 2 | | V _{DD} + 0.3 | V | | V _{IH} | Input High Voltage | | $V_{DD} = 2.5V$ | 1.7 | | $V_{DD} + 0.3$ | V | | \/ | Input Low Voltage | | $V_{DD} = 3.3V$ | -0.3 | | 0.8 | V | | V _{IL} | | | $V_{DD} = 2.5V$ | -0.3 | | 0.7 | V | | I _{IH} | Input
High Current | TEST_CLK, MR,
F_SEL0, F_SEL1,
nPLL_SEL, nXTAL_SEL | $V_{DD} = V_{IN} = 3.465$
or 2.5V | | | 150 | μΑ | | I | Input
Low Current | TEST_CLK, MR,
F_SEL0, F_SEL1,
nPLL_SEL, nXTAL_SEL | $V_{DD} = 3.465V \text{ or } 2.5V,$
$V_{IN} = 0V$ | -150 | | | μΑ | # Integrated Circuit Systems, Inc. # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER Table 3D. LVHSTL DC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|---------|---------|---------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | 1.0 | | 1.2 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | 0 | | 0.4 | V | | V _{ox} | Output Crossover Voltage; NOTE 2 | | 40 | | 60 | % | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | 0.6 | | 1.1 | V | NOTE 1: Outputs terminated with 50Ω to ground. NOTE 2: Defined with respect to output voltage swing at a given condition. $\textbf{TABLE 3E. LVHSTL DC C} \textbf{Characteristics, V}_{DD} = \textbf{V}_{DDA} = 2.5 \text{V} \pm 5\%, \textbf{V}_{DDO} = 1.8 \text{V} \pm 0.2 \text{V}, \text{Ta} = -40 ^{\circ} \text{C to } 85 ^{\circ} \text{C}$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------|-----------------------------------|-----------------|---------|---------|---------|-------| | V _{OH} | Output High Voltage; NOTE 1 | | 1.0 | | 1.2 | V | | V _{OL} | Output Low Voltage; NOTE 1 | | | 0.235 | | V | | V _{ox} | Output Crossover Voltage; NOTE 2 | | 40 | | 60 | % | | V _{SWING} | Peak-to-Peak Output Voltage Swing | | | 0.9 | | V | NOTE 1: Outputs terminated with 50Ω to ground. NOTE 2: Defined with respect to output voltage swing at a given condition. TABLE 4. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|---------|-----------|---------|-------| | Mode of Oscillation | | Fi | undamenta | ıl | | | Frequency | | 22.4 | 25 | 27.2 | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | | Drive Level | | | | 1 | mW | NOTE: Characterized using an 18pF parallel resonant crystal. # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER Table 5A. AC Characteristics, $V_{DD} = V_{DDA} = 3.3V \pm 5\%$, $V_{DDO} = 1.8V \pm 0.2V$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--------------------------------------|-------------------------------|---------|---------|---------|-------| | | Output Frequency | F_SEL[1:0] = 00 | 140 | | 170 | MHz | | f _{out} | | F_SEL[1:0] = 01 | 112 | | 136 | MHz | | | | F_SEL[1:0] = 10 | 56 | | 68 | MHz | | tsk(o) | Output Skew; NOTE 1, 3 | | | TBD | | ps | | | RMS Phase Jitter (Random);
NOTE 2 | 156.25MHz, (1.875MHz - 20MHz) | | 0.44 | | ps | | <i>t</i> jit(Ø) | | 125MHz, (1.875MHz - 20MHz) | | 0.48 | | ps | | | | 62.5MHz,(1.875MHz - 20MHz) | | 0.49 | | ps | | t _R / t _F | Output Rise/Fall Time | 20% to 80% | | 410 | | ps | | odc | Output Duty Cycle | | | 50 | | % | NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at $V_{\tiny DDO}/2$. NOTE 2: Please refer to the Phase Noise Plot. NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. $\textbf{Table 5B. AC Characteristics, V}_{DD} = V_{DDA} = 2.5V \pm 5\%, V_{DDO} = 1.8V \pm 0.2V, TA = -40^{\circ}C \text{ to } 85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--------------------------------------|-------------------------------|---------|---------|---------|-------| | | Output Frequency | F_SEL[1:0] = 00 | 140 | | 170 | MHz | | f _{out} | | F_SEL[1:0] = 01 | 112 | | 136 | MHz | | 001 | | F_SEL[1:0] = 10 | 56 | | 68 | MHz | | tsk(o) | Output Skew; NOTE 1, 3 | | | TBD | | ps | | | RMS Phase Jitter (Random);
NOTE 2 | 156.25MHz, (1.875MHz - 20MHz) | | 0.41 | | ps | | <i>t</i> jit(Ø) | | 125MHz, (1.875MHz - 20MHz) | | 0.49 | | ps | | | | 62.5MHz,(1.875MHz - 20MHz) | | 0.50 | | ps | | t _R / t _F | Output Rise/Fall Time | 20% to 80% | | 380 | | ps | | odc | Output Duty Cycle | | | 50 | | % | NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions. Measured at $V_{\text{DDO}}/2$. NOTE 2 Please refer to the Phase Noise Plot. NOTE 3 This parameter is defined in accordance with JEDEC Standard 65. # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER ## Typical Phase Noise at 156.25MHz # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER ## PARAMETER MEASUREMENT INFORMATION #### LVHSTL 3.3V/1.8V OUTPUT LOAD AC TEST CIRCUIT LVHSTL 2.5V/1.8V OUTPUT LOAD AC TEST CIRCUIT #### **OUTPUT SKEW** #### OUTPUT RISE/FALL TIME #### RMS PHASE JITTER #### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD ## ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER ## **APPLICATION INFORMATION** #### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS8422004I-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{\rm DD}, V_{\rm DDA},$ and $V_{\rm DDO}$ should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 1 illustrates how a 10Ω resistor along with a $10\mu F$ and a $.01\mu F$ bypass capacitor should be connected to each $V_{\rm DDA}$. FIGURE 1. POWER SUPPLY FILTERING #### CRYSTAL INPUT INTERFACE The ICS8422004I-01 has been characterized with 18pF parallel resonant crystals. The capacitor values shown in *Figure* 2 below were determined using a 25MHz 18pF parallel resonant crystal and were chosen to minimize the ppm error. #### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS #### INPUTS: #### **CRYSTAL INPUT:** For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1 \mbox{k}\Omega$ resistor can be tied from XTAL_IN to ground. #### TEST_CLK INPUT: For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the TEST_CLK to ground. #### LVCMOS CONTROL PINS: All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. #### **OUTPUTS:** #### LVHSTL OUTPUT All unused LVHSTL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated. ## ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER ## POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the ICS822004I-01. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the ICS8422004I-01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results. NOTE: Please refer to Section 3 for details on calculating power dissipated in the load. - Power (core)_{MAX} = V_{DD MAX} * I_{DD MAX} = 3.465V * 100mA = 346.5mW - Power (outputs)_{MAX} = 32.8mW/Loaded Output pair If all outputs are loaded, the total power is 4 x 32.8mW = 131.2mW Total Power $_{MAX}$ (3.465V, with all outputs switching) = 346.5mW + 131.2mW = 477.7mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS TM devices is 125 $^{\circ}$ C. The equation for Tj is as follows: Tj = θ_{IA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) $T_A = Ambient Temperature$ In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance $\theta_{i,k}$ must be used. Assuming a moderate air flow of 1 linear meter per second and a multi-layer board, the appropriate value is 65°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: $85^{\circ}\text{C} + 0.478\text{W} * 65^{\circ}\text{C/W} = 99.85^{\circ}\text{C}$. This is well below the limit of 125°C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). Table 6. Thermal Resistance θ_{1A} for 24-pin TSSOP, Forced Convection | θ _{JA} by Velocity (Meters per Second) | | | | | | | |---|--------|--------|--------|--|--|--| | | 0 | 1 | 2.5 | | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 70°C/W | 65°C/W | 62°C/W | | | | # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER #### 3. Calculations and Equations. The purpose of this section is to derive the power dissipated into the load. LVHSTL output driver circuit and termination are shown in Figure 3. To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load. Pd_H is power dissipation when the output drives high. Pd_L is the power dissipation when the output drives low. $$\begin{split} & Pd_H = (V_{OH_MIN}/R_{_L}) * (V_{DD_MAX} - V_{OH_MIN}) \\ & Pd_L = (V_{OL_MAX}/R_{_L}) * (V_{DD_MAX} - V_{OL_MAX}) \end{split}$$ Pd_H = $$(1V/50\Omega) * (2V - 1V) = 20mW$$ Pd_L = $(0.4V/50\Omega) * (2V - 0.4V) = 12.8mW$ Total Power Dissipation per output pair = Pd_H + Pd_L = 32.8mW # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER ## RELIABILITY INFORMATION Table 7. $\theta_{\rm JA}{\rm vs.}$ Air Flow Table for 24 Lead TSSOP θ_{M} by Velocity (Meters per Second) 012.5Multi-Layer PCB, JEDEC Standard Test Boards70°C/W65°C/W62°C/W TRANSISTOR COUNT The transistor count for ICS8422004I-01 is: 2951 # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER #### PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP TABLE 8. PACKAGE DIMENSIONS | SYMBOL | Millimeters | | | |--------|-------------|---------|--| | | Minimum | Maximum | | | N | 24 | | | | А | | 1.20 | | | A1 | 0.05 | 0.15 | | | A2 | 0.80 | 1.05 | | | b | 0.19 | 0.30 | | | С | 0.09 | 0.20 | | | D | 7.70 | 7.90 | | | E | 6.40 BASIC | | | | E1 | 4.30 | 4.50 | | | е | 0.65 BASIC | | | | L | 0.45 | 0.75 | | | α | 0° | 8° | | | aaa | | 0.10 | | Reference Document: JEDEC Publication 95, MO-153 # ICS8422004I-01 FEMTOCLOCKSTM CRYSTAL-TO-LVHSTL FREQUENCY SYNTHESIZER #### TABLE 9. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |---------------------|---------------|---------------------------|--------------------|---------------| | ICS8422004AGI-01 | ICS422004AI01 | 20 Lead TSSOP | tube | -40°C to 85°C | | ICS8422004AGI-01T | ICS422004AI01 | 20 Lead TSSOP | 2500 tape & reel | -40°C to 85°C | | ICS8422004AGI-01LF | TBD | 20 Lead "Lead-Free" TSSOP | tube | -40°C to 85°C | | ICS8422004AGI-01LFT | TBD | 20 Lead "Lead-Free" TSSOP | 2500 tape & reel | -40°C to 85°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.