DATA IMAGE CORPORATION

LCD Module Specification

ITEM NO.: **GM126414FRNNB-01**

Table of Contents

1. COVER	& CONTENTS		1					
2. REVISI	ON HISTORY		2					
3. GENEF	AL SPECIFICATIONS							
4. ABSOL	UTE MAXIMUM RAT	INGS ·····	4					
5. ELECT	RICAL CHARACTERISTICS							
6. ELECT	ELECTRO-OPTICAL CHARACTERISTICS 5							
7. TIMING	CHARACTERISTIC	s	8					
8. PIN CO	NNECTIONS		9					
9. POWER	R SUPPLY		9					
10. BLOCK	DIAGRAM ·····		10					
11. QUALIT	Y ASSURANCE ·····		16					
12. LOT NU	JMBERING SYSTEM		20					
13. LCM N	JMBERING SYSTEM	1	20					
14. PRECA	UTIONS IN USE LCI	M	21					
15 OUTLIN	15 OUTLINE DRAWING ····· 22							
16. PACKAGE INFORMATION 23								
&D Dept.	Q.C. Dept.	Eng. Dept.	Prod. Dept.					

R&D Dept.	Q.C. Dept.	Eng. Dept.	Prod. Dept.
Version:	Issued Date:	Sheet Code:	Total Pages:
	2002/9/18		23

Page: 1 / 23

2. RECORD OF REVISION

Rev	Date	Item	Page	Comment
Rev	Date	Item		Comment New model numbering system update from old P/N# GM12643FRH

Page: 2 / 23

3. GENERAL SPECIFICATION

Display Format :	128 (W) \times 64 (H) dots
Dot Size :	0.4 (W) × 0.56 (H) mm
View Area :	62 (W) × 44 (H) mm
General Dimensions :	78 (W) \times 70 (H) \times 10 (T) mm Max.
Weight:	g max.
LCD Type :	STN Gray STN Yellow V FSTN
Polarizer mode :	V Reflective Transflective
	TransmissiveNegative
View Angle :	V 6 O'clock 12 O'clock Others
Backlight :	LED EL CCFL
Backlight Color :	Yellow green Amber Blue Green
	White Others
Controller / Driver :	T6963C
Temperature Range :	Normal Operating 0 to 50°C Storage -20 to 70°C V Wide Temperature Operating -20 to 70°C Storage -30 to 80°C

Page: 3 / 23

4. ABSOLUTE MAXIMUM RATINGS

4.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

 $V_{SS}=0V$, Ta=25°C

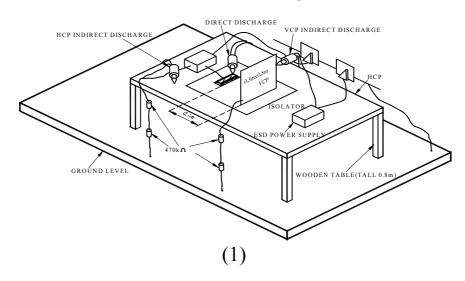
Item	Symbol	Min.	Max.	Unit
Supply Voltage (Logic)	VDD-VSS	0	7	V
Supply Voltage (LCD Driver)	VDD-VEE	0	19	V
Input Voltage	Vı	Vss	VDD	V
Operating Temperature	Тор	-20	70	°C
Storage Temperature	Тѕтс	-30	80	°C

4.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

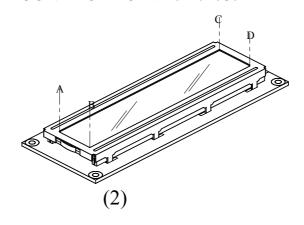
Item	Operating		Sto	rage	Comment	
item	(Min.)	Max.)	(Min.)	(Max.)	Comment	
Ambient Temp	-20	70	-30	80	Note (1)	
Humidity	Note (2)		Note(2)		Without Condensation	
Vibration		4.9M/S ²		19.6M/S ²	XYZ Direction	
Shock		29.4M/S ²		490M/S ²	XYZ Direction	

Note(1) Ta = 0° C : 50Hr Max. Note(2) Ta $\leq 40^{\circ}$ C : 90% RH Max.

Ta $\geq 40^{\circ}\text{C}$: Absolute humidity must be lower than the humidity of 90% RH at 40°C .


Page: 4 / 23

4.3 Electronic Static Discharge maximum rating


ESD test method: IEC1000-4-2

Item	Description				
Testing environment	Ambient temperature :15°C to 35 °C				
	Humidity: 30% to 60 %				
	LCM (E.U.T)	LCM (E.U.T): Power up			
Testing equipment	Manufacture: N	NoiseKen, Model No. ESD-100L			
Testing condition	See drawing 1				
Direct discharge	$0 \text{ to } \pm 6 \text{ KV}$	Discharge point, see drawing 2			
Indirect discharge	$0 \text{ to } \pm 12\text{KV}$	Discharge point, see drawing 1			
Pass condition	No malfunction of unit. Temporary malfunction of unit which				
	can be recovered by system reset				
Fail condition	Non. Recovera	ble malfunction of LCM or system			

FIG 1 ESD TESTING EQUIPMENT

DIRECT CONTACT DISCHARGE CONTACT POINT : A.B.C.D

Page: 5 / 23

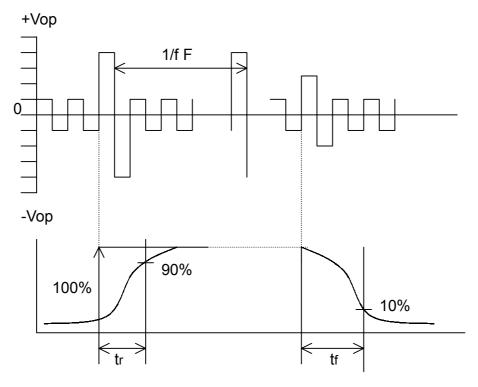
5. **ELECTRICAL CHARACTERISTICS**

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage (Logic)	VDD-Vss		4.5	5.0	5.5	V
		-20°C	10.0	10.5	11.5	
Supply Voltage (LCD)	VDD-VLCD	25°C	9.0	9.5	10.12	V
		70°C	7.8	8.3	9.0	
Innut Valtage	VIH		0.7Vss		VDD	V
Input Voltage	VIL		Vss		0.3VDD	V
Logic Supply	IDD	VDD-Vss=5V		12		mA
Current	ILCD	vuu-v55−3V		3		IIIA

6. ELECTRO-OPTICAL CHARACTERISTICS

ITEM	Symbol	Condition	Min.	Тур.	Max.	Unit	Ref.
Rise Time	Tr	0°C				me	Note (1)
Rise Time	- 11	25°C		140	210	ms	
Fall Time	Tf	0°C		1	1	ms	
		25°C		220	330		
Contrast	CR	25°C		2.7	-		Note (3)
View Angle	θ1~θ2 Ø1, Ø2	25°C &			80		Note (2)
View Aligie		CR≥1.5	-35	1	35		Note (2)
Frame Frequency	Ff	25°C		64	1	Hz	

Note (1) & (2): See next page

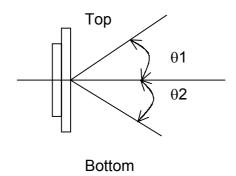

Note (3): Contrast ratio is defined under the following condition:

CR= Brightness of non-selected condition Brightness of selected condition

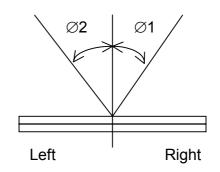
- Temperature ----- 25°C (a).
- Frame frequency ---- 64Hz (b).
- Viewing angle ----- θ = 0°, \varnothing = 0° Operating voltage --- 9.5V (c).
- (d).

Page: 6 / 23

Note (1) Response time is measured as the shortest period of time possible between the change in state of an LCD segment as demonstrated below:

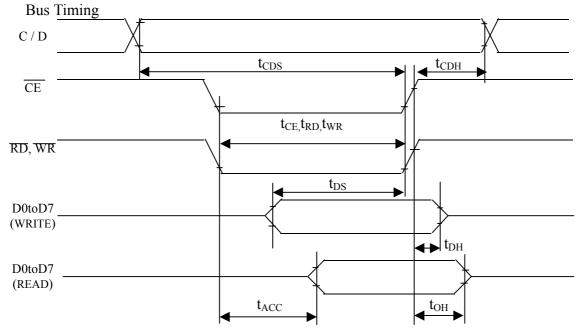


Condition:


- (a) . Temperature -----25° $\mathbb C$
- (b). Frame frequency ----- 64Hz
- (c). View Angle ----- θ = 0°, \varnothing =0°
- (d). Operating voltage ----- 9.5V

Note (2) Definition of View Angle

Top – Bottom direction


Right -- Left direction

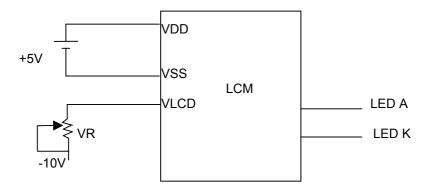
Page: 7 / 23

7. TIMING CHARACTERISTICS

• Switching Characteristics (2)

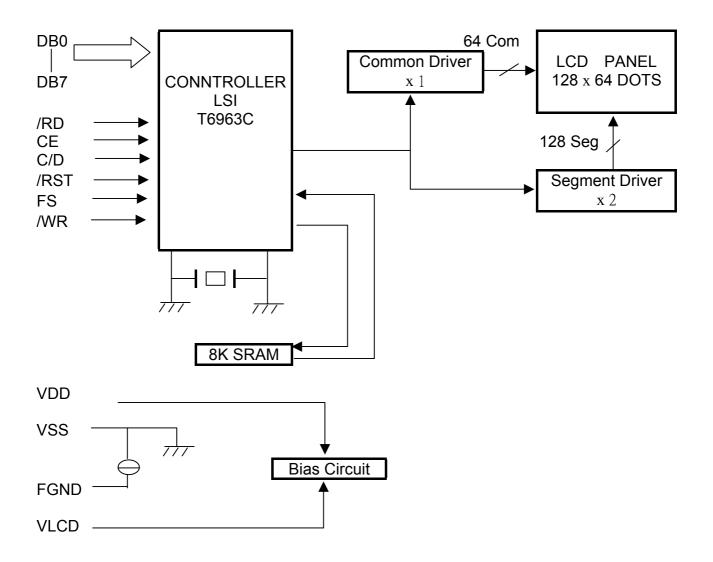
TEST CONDITIONS (Unless otherwise noted. $V_{DD}\!=5.0V\pm10\%,~V_{SS}\!=0V,~Ta$ = -20 to 75°C)

ITEM	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
C / D Set-up Time	t_{CDS}		100		ns
C / D Hold Time	t _{CDH}		10		ns
CE, RD, WR Pulse Width	$t_{CE,}t_{RD,}t_{WR}$		80		ns
Data Set-up Time	t_{DS}		80		ns
Data Hold Time	t _{DH}		40		ns
Access Time	t _{ACC}			150	ns
Output Hold Time	t _{OH}		10	50	ns


Page: 8 / 23

8. PIN CONNECTIONS

Pin	Symbol	Function
1	FGND	Frame Ground (Connect to Bezel)
2	V_{SS}	Ground Potential (Logic)
3	$V_{ m DD}$	Power Supply (+5V)
4	$V_{LCD}(V_{O)}$	Power Supply Input for LCD (-V)
5	/WR	Data Write
6	/RD	Data Read
7	CE	Chip Enable
8	C/D	Code / Data
9	/RST	Reset, Active LOW
10	DB0	
11	DB1	
12	DB2	
13	DB3	Data Bus Line
14	DB4	Data bus Line
15	DB5	
16	DB6	
17	DB7	
18	FS	Font Select, $L = 8 \times 8$, $H = 6 \times 8$
19	LEDK	LED Cathode. Power Supply -
20	LEDA	LED Anode. Power Supply +


9. POWER SUPPLY

VR = 10K

Page: 9 / 23

10. BLOCK DIAGRAM

Page: 10 / 23

• Flowchart of communications with MPU

(1) Status Read

A status check must be performed before data is read or written.

Status check

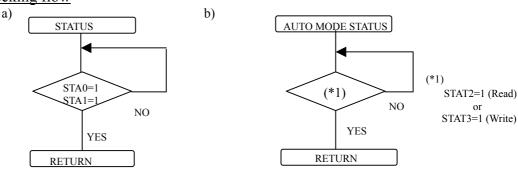
The Status of T6963C can be read from the data lines.

 $\begin{array}{ccc} \overline{\underline{RD}} & & L \\ \overline{\underline{WR}} & & H \\ \overline{\underline{CE}} & & L \\ C/D & & H \end{array}$

D0 to D7 Status word

The T6963C status word format is as follows:

MSB							
STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
D7	D6	D5	D4	D3	D2	D1	D0

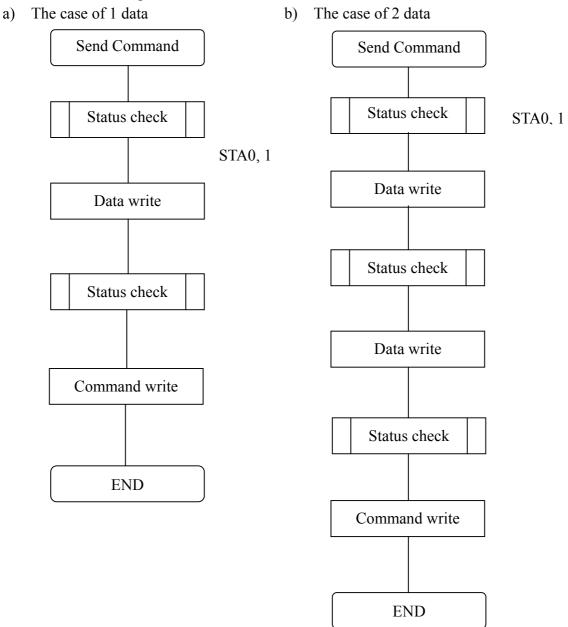

STA0	Check command execution capability	0 : Disable 1 : Enable
STA1	Check data read / write capability	0 : Disable 1 : Enable
STA2	Check Auto mode data read capability	0 : Disable 1 : Enable
STA3	Check Auto mode data write capability	0 : Disable 1 : Enable
STA4	Not used	
STA5	Check controller operation capability	0 : Disable 1 : Enable
STA6	Error flag. Used for Screen Peek and Screen copy	0 : No error 1 : Error
51710	commands.	0.140 chor 1. Ehor
STA7	Check the blink condition	0 : Display off 1 : Normal display

(Note 1) It is necessary to check STA0 and STA1 at the same time.

There is a possibility of erroneous operation due to a hardware interrupt.

- (Note 2) For most modes STA0 / STA1 are used as a status check.
- (Note 3) STA2 and STA3 are valid in Auto mode; STA0 and STA1 are invalid.

Status checking flow


(Note 4) When using the MSB = 0 command, a Status Read must be performed.

If a status check is not carried out, the T6963C cannot operate normally, even after a delay time. The hardware interrupt occurs during the address calculation period (at the end of each line). If a MSB = 0 command is sent to the T6963C during this period, the T6963C enters Wait status. If a status check is not carried out in this state before the next command is sent, there is the Possibility that the command or data will not be received.

(2) Setting data

When using the T6963C, first set the data, then set the command.

Procedure for sending a command

(Note) When sending more than two data, the last datum (or last two data) is valid.

Page: 12 / 23

COMMAND DEFINITIONS

COMMAND	CODE	D1	D2	FUNCTION
REGISTERS SETTING	00100001 00100010 00100100	X address Data Low address	Y address 00H High address	Set Cursor Pointer Set Offset Register Set Address Pointer
SET CONTROL WORD	01000000 01000001 01000010 01000011	Low address Columns Low address Columns	High address 00H High address 00H	Set Text Home Address Set Text Area Set Graphic Home Address Set Graphic Area
MODE SET	1000X000 1000X001 1000X011 1000X100 10000XXX 10001XXX		- - - - -	OR mode EXOR mode AND mode Text Attribute mode Internal CG ROM mode External CG RAM mode
DISPLAY MODE	10010000 1001XX10 1001 XX11 100101 XX 100110 XX 100111 XX		- - - - -	Display off Cursor on, blink off Cursor on, blink on Text on, graphic off Text off, graphic on Text on, graphic on
CURSOR PATTERN SELECT	10100000 10100001 10100010 10100011 1010010	- - - - - -	- - - - - - -	1-line cursor 2-line cursor 3-line cursor 4-line cursor 5-line cursor 6-line cursor 7-line cursor
DATA AUTO READ / WRITE	10110000 10110001 10110010	_ _ _	_ _ _	Set Data Auto Write Set Data Auto Read Auto Reset
DATA READ / WRITE	1100000 1100001 11000010 1100011 11000100 11000101	Data — Data — Data —	- - - - -	Data Write and Increment ADP Data Read and Increment ADP Data Write and Decrement ADP Data Read and Decrement ADP Data Write and Nonvariable ADP Data Read and Nonvariable ADP
SCREEN PEEK	11100000			Screen Peek
SCREEN COPY	11101000			Screen Copy
BIT SET / RESET	11110XXX 11111XXX 1111X000 1111X001 1111X010 1111X011 1111X100 1111X101 1111X101	- - - - - - -	- - - - - - -	Bit Reset Bit Set Bit 0 (LSB) Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

X : invalid

Page: 13 / 23

• Setting registers

CODE	HEX.	FUNCTION	D1	D2
00100001	21H	SET CURSOR POINTER	X ADRS	Y ADRS
00100010	22H	SET OFFSET REGISTER	DATA	00H
00100100	24H	SET ADDRESS POINTER	LOW ADRS	HIGH ADRS

(1) Set Cursor Pointer

The position of the cursor is specified by X ADRS and Y ADRS. The cursor position can only be moved by this command. Data read / write from the MPU never changes the cursor pointer. X ADRS and Y ADRS are specified as follows.

X ADRS 00H to 4FH (lower 7 bits are valid)Y ADRS 00H to 1FH (lower 5 bits are valid)

a) Single – Scan X ADRS 00 to 4FH b) Dual – Scan X ADRS 00 to 4FH

Y ADRS 00H to 0FH

Y ADRS 00H to 0FH Upper screen

Y ADRS 00H to 1FH Lower screen

(2) Set Offset Register

The offset register is used to determine the external character generator RAM area. The T6963C has a 16-bit address bus as follows:

MSB	,													Ι	LSB
ad15	ad14	ad13	ad12	ad11	ad10	ad9	ad8	ad7	ad6	ad5	ad4	ad3	ad2	ad1	ad0
Offset Register Data						Character Code						Li	ne Sc	an	

Page: 14 / 23

CHARACTER CODE MAP ROM code 0101

CHARACTER CODE MAP

ROM code 0101

LSB MSB	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0			11		#	7.	8	:	()	*		:	*****	::	.**
1		1	2				6	1	8	9	::	:	<		>	?
2			В				!	6	-	I		K	<u></u>	M	N	
3			K				Ų	Į,J	X	Υ	ď	L	٦.		٠٠.	
4	*;	-==					- -	:=	ľ	1	اً	K	1	m	ľ'n	
5	-	-==	! "		-	<u></u>	Ų	W	×	:!		₹.		·	•••	
6		ü	Ė		ä			:				1	1	1		Ä
7	Ë	2	Æ	ô	Ö	Ò	Ü	:3		O	Ü	4	E			#

Page: 15 / 23

11. QUALITY ASSURANCE

11.1 Test Condition

11.1.1 Temperature and Humidity(Ambient Temperature)

Temperature : $20 \pm 5^{\circ}$ C Humidity : $65 \pm 5\%$

11.1.2 Operation

Unless specified otherwise, test will be conducted with LCM in operation.

11.1.3 Container

Unless specified otherwise, vibration test will be conducted on module only.

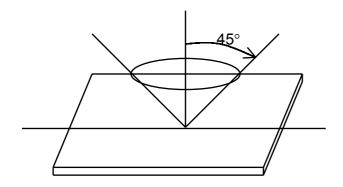
11.1.4 Test Frequency Single cycle.

11.1.5 Test Method

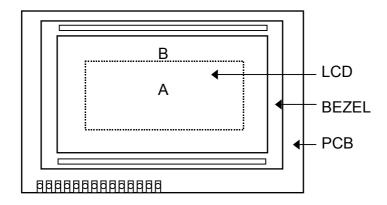
No.	Parameter	Conditions	Regulations
1	High Temperature Operating	70 ± 2 °C	Note 3
2	Low Temperature Operating	-20 ± 2 °C	Note 3
3	High Temperature Storage	80 ± 2 °C	Note 3
4	Low Temperature Storage	-30 ± 2 °C	Note 3
5	Vibration Test (Non-operation state)	Total fixed amplitude: 1.5mm Vibration Frequency: 10 ~ 55Hz One cycle 60 seconds to 3 directions of X.Y.Z. for each 15 minutes	Note 3
6	Damp Proof Test (Non-operation state)	40°C ± 2°C, 90~95%RH, 96h	Note 1,2
7	Shock Test (Non-operation state)	To be measured after dropping from 60cm high once concrete surface in packing state	Note 3

Note 1: Returned under normal temperature and humidity for 4 hrs.

Note 2: No dew condensation to be observed.


Note 3: No change on display and in operation under the test condition

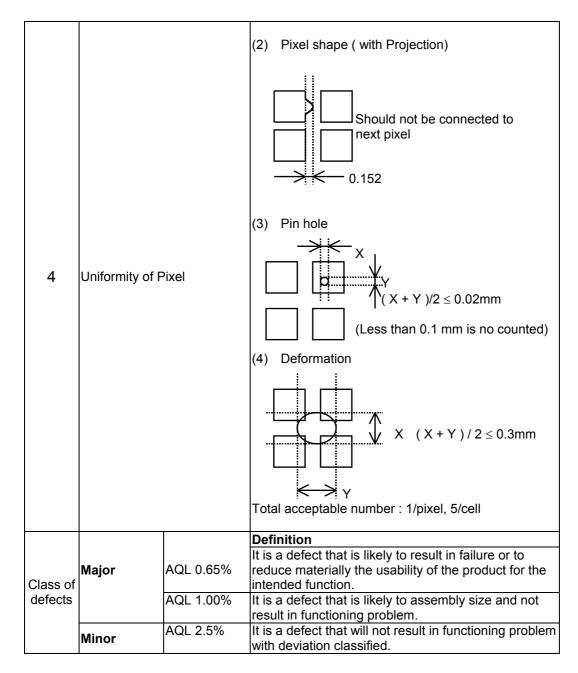
Page: 16 / 23


11.2 Inspection condition

11.2.1 Inspection conditions

The LCD shall be inspected under 40W white fluorescent light.

11.2.2 Definition of applicable Zones


A : Display Area B : Non-Display Area

Page: 17 / 23

11.2.3 Inspection Parameters

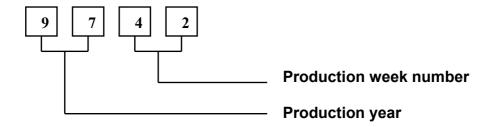
No.	Parameter	Criteria					
1	Black or White spots						
2	Scratch, Substances	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
3	Air Bubbles (between glass & polarizer)						
4	Uniformity of Pixel	(1) Pixel shape (with Dent) 0.152					

Page: 18 / 23

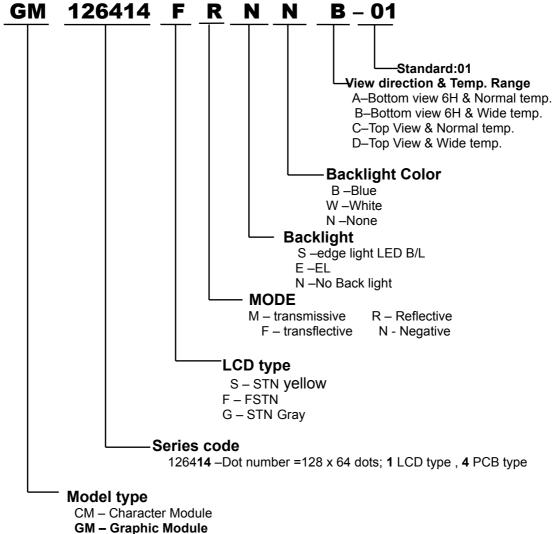
11.3 Sampling Condition

Unless otherwise agree in written, the sampling inspection shall be applied to the incoming inspection of customer.

Lot size: Quantity of shipment lot per model.


Sampling type: normal inspection, single sampling

Inspection level: Level II


Sampling table: MIL-STD-105E

Page: 19 / 23

12. LOT NUMBERING SYSTEM

13. LCM NUMBERING SYSTEM

CX - Custom Character Module

GX - Custom Graphic Module

14. PRECAUTION FOR USING LCM

1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing,

- (1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause polarization degredation, polarizer peel off or bubble.
- (2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzin.
- (3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
- (4). Glass can be easily chipped or cracked from rough handling, especially at corners and edges.
- (5). Do not drive LCD with DC voltage.

2. Liquid Crystal Display Modules

2.1 Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.

- (1). Do not tamper in any way with the tabs on the metal frame.
- (2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattern.
- (3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).
- (4). When mounting a LCM make sure that the PCB is not under any stress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
- (5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing pixels.

2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

- (1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.
- (2). The modules should be kept in antistatic bags or other containers resistant to static for storage.
- (3). Only properly grounded soldering irons should be used
- (4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.

- (5) The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.
- (6). Since dry air is inductive to static, a relative humidity of 50-60% is recommended.

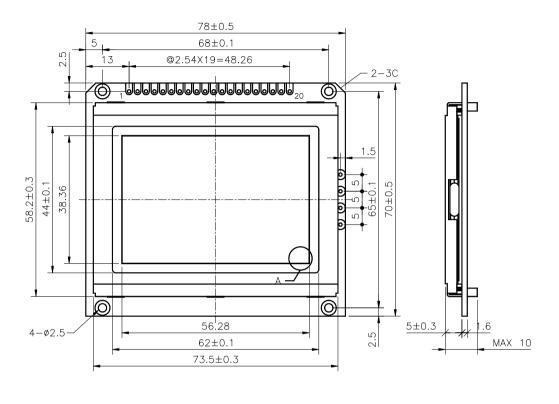
2.3 Soldering

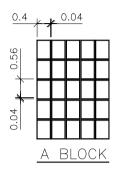
- (1). Solder only to the I/O terminals.
- (2). Use only soldering irons with proper grounding and no leakage.
- (3). Soldering temperature : $280^{\circ}\text{C} \pm 10^{\circ}\text{C}$
- (4). Soldering time: 3 to 4 sec.
- (5). Use eutectic solder with resin flux fill.
- (6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

2.4 Operation

- (1). The viewing angle can be adjusted by varying the LCD driving voltage V0.
- (2). Driving voltage should be kept within specified range; excess voltage shortens display life.
- (3). Response time increases with decrease in temperature.
- (4). Display may turn black or dark blue at temperatures above its operational range; this is (however not pressing on the viewing area) may cause the segments to appear "fractured".
- (5). Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured".

2.5 Storage

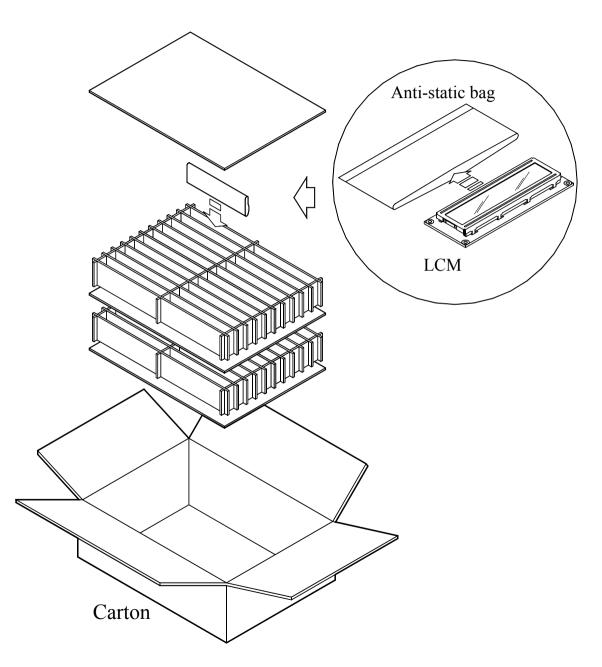

If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.


2.6 Limited Warranty

Unless otherwise agreed between DATA IMAGE and customer, DATA IMAGE will replace or repair any of its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with DATA IMAGE acceptance standards, for a period on one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DATA IMAGE is limited to repair and/or replacement on the terms set forth above. DATA IMAGE will not responsible for any subsequent or consequential events.

Page: 21 / 23

15 OUTLINE DRAWING



PIN FUNCTIONS								
1. FG	11.	DB1						
2. VSS	12.	DB2						
3. VCC	13.	DB3						
4. VLCD	14.	DB4						
5. /WR	15.	DB6						
6. /RD	16.	DB5						
7. /CE	17.	DB7						
8. C/D	18.	FS						
9. /RST	19.	LEDK						
10.DB0	20.	LEDA						

Page: 22 / 23

16.PACKAGE INFORMATION

Page: 23 / 23