
PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to char

MITSUBISHI Pch POWER MOSFET

HIGH-SPEED SWITCHING USE

APPLICATION

Motor control, Lamp control, Solenoid control DC-DC converter, etc.

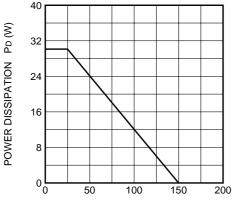
MAXIMUM RATINGS (Tc = 25°C)

Symbol	Parameter	Conditions	Ratings	Unit
VDSS	Drain-source voltage	VGS = 0V	-100	V
Vgss	Gate-source voltage	VDS = 0V	±20	V
ID	Drain current		-6	A
IDM	Drain current (Pulsed)		-24	A
IDA	Avalanche drain current (Pulsed)	L = 100µH	-6	A
Is	Source current		-6	A
ISM	Source current (Pulsed)		-24	A
PD	Maximum power dissipation		30	W
Tch	Channel temperature		-55 ~ +150	°C
Tstg	Storage temperature		-55 ~ +150	°C
_	Weight	Typical value	0.26	g

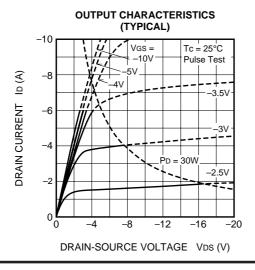
Jan.1999

MITSUBISHI Pch POWER MOSFET

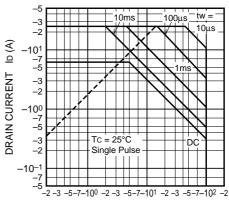
FX6ASJ-2

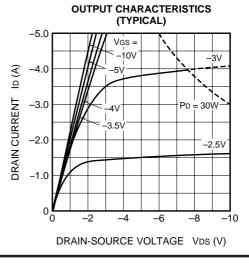

HIGH-SPEED SWITCHING USE

ELECTRICAL CHARACTERISTICS (Tch = 25°C)


Symbol	Parameter	Test conditions	Limits			Linit
			Min.	Тур.	Max.	Unit
V (BR) DSS	Drain-source breakdown voltage	ID = -1mA, $VGS = 0V$	-100	—	—	V
IGSS	Gate-source leakage current	$VGS = \pm 20V, VDS = 0V$	—	—	±0.1	μA
IDSS	Drain-source leakage current	VDS = -100V, VGS = 0V	—	—	-0.1	mA
VGS (th)	Gate-source threshold voltage	ID = -1mA, $VDS = -10V$	-1.0	-1.5	-2.0	V
rds (ON)	Drain-source on-state resistance	ID = -3A, $VGS = -10V$	_	0.46	0.58	Ω
rds (ON)	Drain-source on-state resistance	ID = -3A, $VGS = -4V$	—	0.55	0.72	Ω
VDS (ON)	Drain-source on-state voltage	ID = -3A, $VGS = -10V$	_	-1.38	-1.74	V
yfs	Forward transfer admittance	ID = -3A, $VDS = -5V$	_	4.7	_	S
Ciss	Input capacitance	VDS = -10V, VGS = 0V, f = 1MHz	—	1110	_	pF
Coss	Output capacitance		_	108	_	pF
Crss	Reverse transfer capacitance		_	44	_	pF
td (on)	Turn-on delay time	VDD = $-50V$, ID = $-3A$, VGS = $-10V$, RGEN = RGS = 50Ω	_	9	_	ns
tr	Rise time		_	8	_	ns
td (off)	Turn-off delay time		_	72	_	ns
tf	Fall time		_	33	_	ns
Vsd	Source-drain voltage	IS = -3A, $VGS = 0V$	_	-1.0	-1.5	V
Rth (ch-c)	Thermal resistance	Channel to case	_	_	4.17	°C/W
trr	Reverse recovery time	Is = -6A, dis/dt = 100A/µs	_	80	_	ns

PERFORMANCE CURVES




CASE TEMPERATURE TC (°C)

MAXIMUM SAFE OPERATING AREA

DRAIN-SOURCE VOLTAGE VDS (V)

Jan.1999

MITSUBISHI Pch POWER MOSFET

FX6ASJ-2

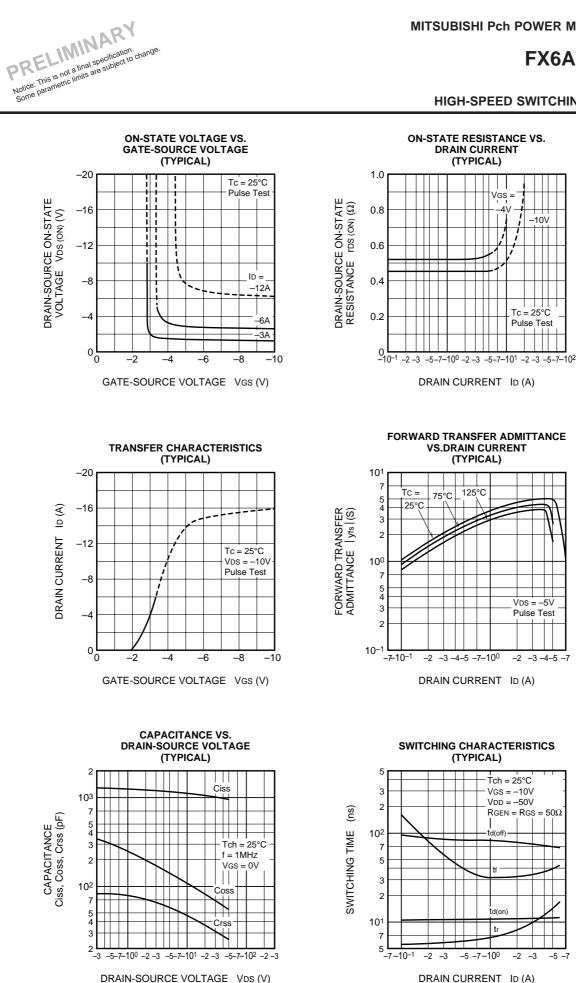
HIGH-SPEED SWITCHING USE

-10V

 $Tc = 25^{\circ}C$

Pulse Test

VDS = -5V

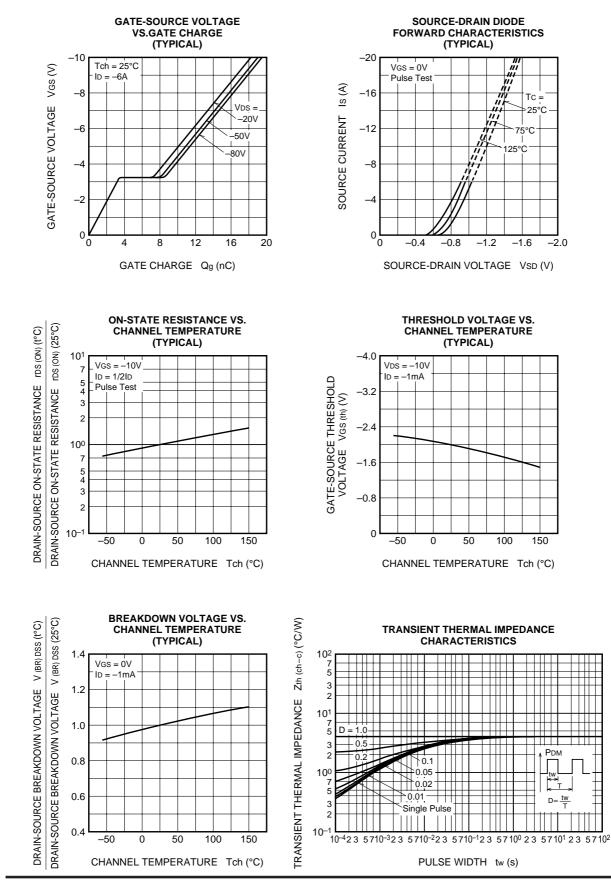

Pulse Test

-2 -3 -4-5 -7

= 50Ω

-5 -7

-2 -3



MITSUBISHI ELECTRIC

Jan.1999

FX6ASJ-2

HIGH-SPEED SWITCHING USE

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change

