
FerretTronics Control Circuits  http://www.ferrettronics.com/

Page 1 of 7

FerretTronics FT639 Servo
Controller Chip

Data Sheet

General Description:

The FT639 is an RC servo controller chip. The FT639 will
control five radio-controlled servos through one 2400 baud
serial line. It has a footprint of only eight pins. The only
external components required are two resistors and a diode for
an normal RS232 line such as the one found on a personal
computer. No components are needed for a 0-5 volt serial line
such as those found on the Parallax Basic Stamp  . Just
connect the servo control lines directly to the chip and connect
the serial in line from a 2400 baud, No parity, 1 stop bit serial
source, and five RC servos can be controlled, (see circuit
setup).

Applications:

Radio control servo motors are used in remote control model
airplanes, cars, and boats. They are widely available and can be
used in robotics, automation, animation, and many other tasks.
The problem with using RC servo motors in the past was the
ability to control them. With the FT639 this is no longer a
problem. It is possible now to control five RC servo motors
with just one 2400 baud serial line. Each of the five RC servos
is independently controlled.

Voltage on V++:

Voltage on 2400 Baud
In:

Serial Line Setup:

3.0V - 5.5V

< = V++

2400 Baud, 8 Bit, No
parity, and 1 Stop Bit



FerretTronics Control Circuits  http://www.ferrettronics.com/

Page 2 of 7

Operations:

FT639 has two operating modes: Setup mode and Active mode.
The chip starts in Setup mode. Setup mode is used to set the
pulse length, header length and starting values for the 5 servos.
Active mode sends the control pulses to the servos and controls
the servos through the 2400 baud serial line.

Commands are sent to the FT639 through a 2400 baud, 8 bit,
no parity, 1 stop bit serial line. The commands are all one byte.
Each command is one character sent over the 2400 baud serial
line.

Each RC servo has 256 positions. To send the position of a
servo to the FT639 requires two commands. The first command
contains the servo number and the lower nibble (lower 4 bits)
of the positional number. The second command contains the
servo number and the upper nibble (upper 4 bits) of the
positional number.

The FT639 can set a typical servo in 256 different positions
from 0 to 90 degrees with the short pulse length, or can control
a typical servo in 256 different positions from 0 to 180 degrees
with the long pulse length. The starting position of the servo
can also be adjusted by using a different header length. The
header length can be adjusted in the setup mode.

Setup Mode:

The servo controller starts in Setup mode. The default settings
are the header is approximately 1ms with a short pulse length.
This will control a typical servo in 256 steps from 0 to 90
degrees.

In setup mode the following settings can be adjusted:

1. Header length--this will allow adjustment of the starting
position of the servo. The default setting is 12.

2. Servo pulse length--this allows positioning control of
the servo between 0 to 90 degrees with the shorter pulse
length or positioning control of the servo between 0 to
180 degrees with the longer pulse length. The default
setting is short pulse length.

3. Initial setup of the servo positions--the FT639 will not
send positioning pulses to the servo in Setup mode.
However, positioning commands can be sent to the
FT639 while in setup mode to allow the servos to
energize in a known position. The default setting is
position 0.

The following commands can be sent in Setup mode:

Command
Binary
Value

Decimal
Value

Active Mode 01110101 117

Short Pulse 01010101 85

Long Pulse 01011010 90

The header length command is 0110xxxx, where xxxx is the
setting for the header length.  The actual length of the header
will be different for the different pulse length as shown below:
 



FerretTronics Control Circuits  http://www.ferrettronics.com/

Page 3 of 7

Header
Value

Short
Pulse
Length

Long
Pulse
Length

Control
Byte

Control
Decimal

0 .147 ms .237 ms 01100000 96

1 .219 ms .357 ms 01100001 97

2 .291 ms .477 ms 01100010 98

3 .363 ms .597 ms 01100011 99

4 .435 ms .717 ms 01100100 100

5 .507 ms .837 ms 01100101 101

6 .579 ms .957 ms 01100110 102

7 .651 ms 1.077 ms 01100111 103

8 .723 ms 1.197 ms 01101000 104

9 .795 ms 1.317 ms 01101001 105

10 .867 ms 1.437 ms 01101010 106

11 .939 ms 1.557 ms 01101011 107

12 1.011 ms 1.677 ms 01101100 108

13 1.083 ms 1.797 ms 01101101 109

14 1.155 ms 1.917 ms 01101110 110

15 1.227 ms 2.037 ms 01101111 111

 

Active Mode:

In Active mode the servo control pulses are sent to the servos.
The servos will be energized in this mode. There are only two
commands that are allowed in this mode. Positional commands
and the setup command. The setup command puts the FT639
back into Setup mode. The position of a servo can be changed
by sending a positional command. The positional commands
are sent in Active mode exactly the same as they were in Setup
mode (see instructions above). Sending a positional command
will make the servo move to the new position as soon as the
upper byte command is sent.

The following commands are available in the active mode:
 

Command
Binary
Value

Decimal
Value

Setup Mode 01111010 122

Positional Commands:

To send a positional command to the individual servos, two
bytes must be sent. The first byte sent contains the lower nibble
of the position byte and the second byte sent contains the upper
nibble of the position byte. The lower byte command must be
sent before the upper byte command. The format for the bytes
are:

Lower Byte = 0sssxxxx

Upper Byte = 1sssyyyy

sss = Servo number:



FerretTronics Control Circuits  http://www.ferrettronics.com/

Page 4 of 7

000 = servo 1

001 = servo 2

010 = servo 3

011 = servo 4

100 = servo 5

xxxx = the lower nibble of the position byte

yyyy = the upper nibble of the position byte

A table is shown below with the Lower and Upper Byte for
various positional commands:
 

Binary Value

Position Value Decimal Value

Servo Decimal
Value

Binary
Value

Lower Byte
(0sssxxxx)

Upper Byte
(1sssyyyy)

Lower
Byte

Upper
Byte

1 0 00000000 00000000 10000000 0 128

1 49 00110001 00000001 10000011 1 131

1 185 10111001 00001001 10001011 9 139

1 255 11111111 00001111 10001111 15 143

2 0 00000000 00010000 10010000 16 144

2 49 00110001 00010001 10010011 17 147

2 185 10111001 00011001 10011011 25 155

2 255 11111111 00011111 10011111 31 159

3 0 00000000 00100000 10100000 32 160

3 49 00110001 00100001 10100011 33 163

3 185 10111001 00101001 10101011 41 171

3 255 11111111 00101111 10101111 47 175

4 0 00000000 00110000 10110000 48 176

4 49 00110001 00110001 10110011 49 179

4 185 10111001 00111001 10111011 57 187

4 255 11111111 00111111 10111111 63 191

5 0 00000000 01000000 11000000 64 192

5 49 00110001 01000001 11000011 65 195

5 185 10111001 01001001 11001011 73 203

5 255 11111111 01001111 11001111 79 207



FerretTronics Control Circuits  http://www.ferrettronics.com/

Page 5 of 7

Circuit Diagram:

Note:  For a serial line that has voltage from 0 to V++ requires
no diode resistor network.  The line can be connected directly
to the serial-in pin on the FT639.

Example Code:

Other programming examples can be found at:
http://www.ferrettronics.com/software.html

'#########################################
'# This is a QBASIC programming example
'# For controlling the FT639
'#########################################

DECLARE SUB servoMove (servoNum!, value!)

DECLARE SUB servo1 (value AS INTEGER)
DECLARE SUB servo2 (value AS INTEGER)
DECLARE SUB servo3 (value AS INTEGER)
DECLARE SUB servo4 (value AS INTEGER)
DECLARE SUB servo5 (value AS INTEGER)

CONST ACTIVE = 117
CONST LONGPULSE = 90
CONST SHORTPULSE = 85
CONST HEADER = 96
CONST SETUP = 122

' Opens COM Port 1 for sending out serial commands
OPEN
"COM1:2400,N,8,1,CD0,CS0,DS0,OP0,RS,TB2048,RB2048"
FOR RANDOM AS #1
' This command will put the FT639 in the setup
mode
PRINT #1, CHR$(SETUP);
' This command will put the FT639 in the long
pulse mode
PRINT #1, CHR$(LONGPULSE);
' This command will put the FT639 in the Short
pulse mode
'PRINT #1, CHR$(SHORTPULSE);
' This command will set the header at 3
PRINT #1, CHR$(HEADER + 3);
' This command will put the FT639 in the active
mode
PRINT #1, CHR$(ACTIVE);

'------------------------------------
' Loop to cycle through all positions
'------------------------------------
FOR i = 0 TO 255

' Cause a delay
FOR J = 1 TO 100000
NEXT J

' Moves the servos through all positions

http://www.ferrettronics.com/software.html


FerretTronics Control Circuits  http://www.ferrettronics.com/

Page 6 of 7

servo1 (I)
servo2 (I)
servo3 (I)
servo4 (I)
servo5 (I)
NEXT i

'------------------
' Positions servo 1
'------------------
SUB servo1 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 2
'------------------
SUB servo2 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + 16
lV = lV + 16
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 3
'------------------
SUB servo3 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)

lV = value - (uV * 16)
uV = uV + 128 + 32
lV = lV + 32
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 4
'------------------
SUB servo4 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + 48
lV = lV + 48
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'------------------
' Positions servo 5
'------------------
SUB servo5 (value AS INTEGER)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + 64
lV = lV + 64
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB

'-------------------------------------------------
-----------
' Positions any servo given servo number and
positional value
'-------------------------------------------------
-----------



FerretTronics Control Circuits  http://www.ferrettronics.com/

Page 7 of 7

SUB servoMove (servoNum, value)
DIM uV AS INTEGER
DIM lV AS INTEGER
uV = INT(value / 16)
lV = value - (uV * 16)
uV = uV + 128 + (servoNum - 1) * 16
lV = lV + (servoNum - 1) * 16
PRINT #1, CHR$(lV);
PRINT #1, CHR$(uV);
END SUB


