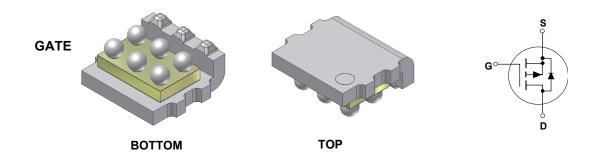


November 2006

FDZ493P

P-Channel 2.5V Specified PowerTrench[®] BGA MOSFET –20V, –4.6A, 46m Ω

Features


- Max $r_{DS(on)}$ = 46m Ω at V_{GS} = -4.5V, I_D = -4.6A
- Max $r_{DS(on)} = 72m\Omega$ at $V_{GS} = -2.5V$, $I_D = -3.6A$
- Occupies only 2.25 mm² of PCB area. Less than 50% of the area of SSOT-6.
- Ultra-thin package: less than 0.80 mm height when mounted to PCB
- Outstanding thermal transfer characteristics:4 times better than SSOT-6.
- Ultra-low Qg x r_{DS(on)} figure-of-merit.
- RoHS Compliant.

General Description

Combining Fairchild's advanced 2.5V specified PowerTrench® process with state of the art BGA packaging process, the FDZ493P minimizes both PCB space and $r_{DS(on)}.$ This BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handing capability,ultra-low profile packaging, low gate charge, and low $r_{DS(on)}.$

Application

- Battery management
- Load switch
- Battery protection

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Par	ameter		Ratings	Units
V_{DS}	Drain to Source Voltage			-20	V
V_{GS}	Gate to Source Voltage			±12	V
	Drain Current -Continuous	T _A = 25°C	(Note 1a)	-4.6	۸
'D	-Pulsed			-10	_ A
P_{D}	Power Dissipation	T _A = 25°C	(Note 1a)	1.7	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	72	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
E	FDZ493P	7"	8mm	3000 units

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0V$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 μ A, referenced to 25°C		-13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16V, \ V_{GS} = 0V$			-1	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 12V, V_{DS} = 0V$			±100	nA

On Characteristics (note 2)

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \mu A$	-0.6	-0.8	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250\mu\text{A}$, referenced to 25°C		3		mV/°C
		$V_{GS} = -4.5V$, $I_D = -4.6A$		36	46	
r _{DS(on)}	Drain to Source On Resistance	$V_{GS} = -2.5V$, $I_D = -3.6A$		58	72	mΩ
		$V_{GS} = -4.5V$, $I_D = -4.6A$, $T_J = 125$ °C		47	65	
I _{D(on)}	On to State Drain Current	$V_{GS} = -4.5V, V_{DS} = -5V$	-10			Α
9 _{FS}	Forward Transconductance	$V_{DS} = -5V, I_D = -4.6A$		13		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = -10V, V _{GS} = 0V, f = 1MHz	754	pF
C _{oss}	Output Capacitance		167	pF
C _{rss}	Reverse Transfer Capacitance	- 1 - 11VII 12	92	pF
R_g	Gate Resistance	f = 1MHz	6	Ω

Switching Characteristics (note 2)

t _{d(on)}	Turn-On Delay Time		11	20	ns
t _r	Rise Time	$V_{DD} = -10V, I_{D} = -1A$ $V_{GS} = -4.5V, R_{GEN} = 6\Omega$	10	20	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = -4.5V, K _{GEN} = 012	22	35	ns
t _f	Fall Time		17	31	ns
$Q_{g(TOT)}$	Total Gate Charge at 10V	$V_{DS} = -10V, I_{D} = -4.6A$	7.5	11	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = -4.5V	1.5		nC
Q_{gd}	Gate to Drain "Miller" Charge		2.0		nC

Drain-Source Diode Characteristics

I_S	Maximum continuous Drain-Source Diode Forward Current				-1.4	Α
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = -1.4A$ (Note 2)		-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	1 - 4 0 4 - 4 0 0 4 / -		17		ns
Q _{rr}	Reverse Recovery Charge	$I_F = -4.6A$, di/dt = 100A/ μ s		5		nC

 R_{0JA} is determined with the device mounted on a $1in^2$ pad 2 oz copper pad on a 1.5×1.5 in. board of FR-4 material. The thermal resistance from the junction to the circuit board side of the solder ball, R_{0JB} is defined for reference. For R_{0JC} the thermal reference point for the case is defined as the top surface of the copper chip carrier. R_{0JC} and R_{0JB} are guaranteed by design while R_{0JA} is determined by the user's board design.

a. 72°C/W when mounted on a 1 in² pad of 2 oz copper,1.5"

X 1.5" X 0.062" thick PCB

b. 157°C/W when mounted on a minimum pad of 2 oz copper

^{2:} Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

Typical Characteristics T_J = 25°C unless otherwise noted

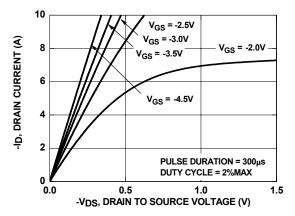


Figure 1. On Region Characteristics

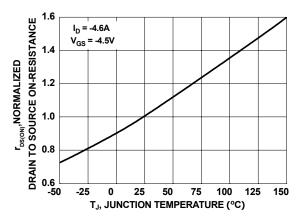


Figure 3. Normalized On Resistance vs Junction Temperature

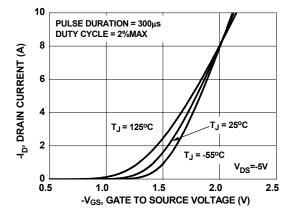


Figure 5. Transfer Characteristics

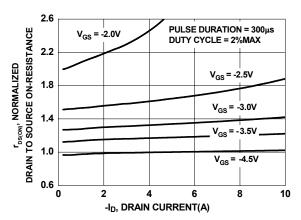


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

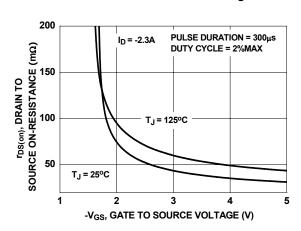


Figure 4. On-Resistance vs Gate to Source Voltage

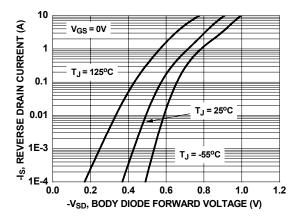


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25°C unless otherwise noted

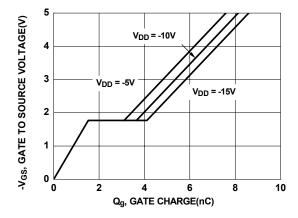


Figure 7. Gate Charge Characteristics

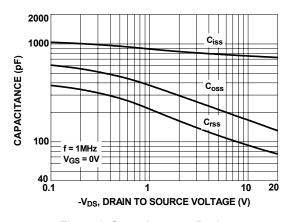


Figure 8. Capacitance vs Drain to Source Voltage

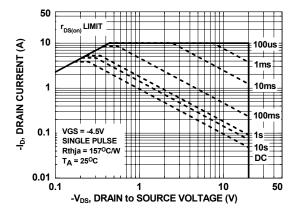


Figure 9. Forward Bias Safe Operating Area

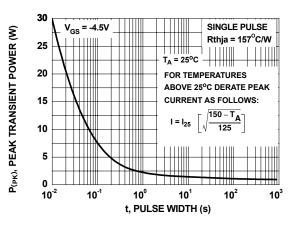
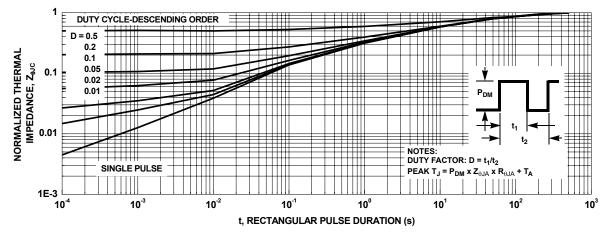
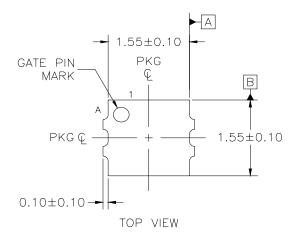
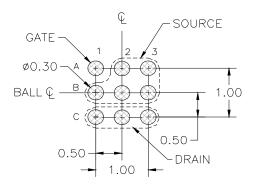
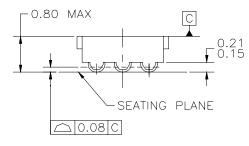
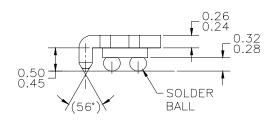


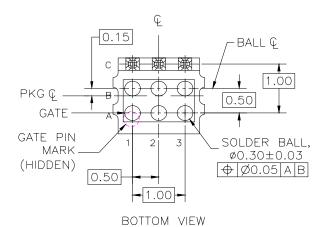
Figure 10. Single Pulse Maximum Power Dissipation


Figure 11. Transient Thermal Response Curve

Dimensional Pad and Layout




LAND PATTERN RECOMMENDATION

FRONT VIEW

SIDE VIEW

NOTES: UNLESS OTHERWISE SPECIFIED

- A) ALL DIMENSIONS ARE IN MILLIMETERS.
- B) NO JEDEC REGISTRATION REFERENCE AS OF JULY 1999.
- C) BALL/STUD CONFIGURATION TABLE

TERMINAL ID	DESIGNATION	TERMINAL TYPE
C1,C2,C3	DRAIN	COPPER STUD
A1	GATE	BALL
A2,A3,B1,B2,B3	SOURCE	BALL

BGA09CREVC

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SILENT SWITCHER® ACEx™ FACT Quiet Series™ OCX^{TM} UniFET™ $\mathsf{UltraFET}^{\circledR}$ ActiveArray™ GlobalOptoisolator™ $OCXPro^{TM}$ SMART START™ Bottomless™ $\mathsf{OPTOLOGIC}^{\mathbb{B}}$ GTO™ SPM™ VCX™ Build it Now™ HiSeC™ OPTOPLANAR™ Stealth™ Wire™ $\mathsf{CoolFET}^{\mathsf{TM}}$ I²CTM $\mathsf{PACMAN^{TM}}$ SuperFET™

 $CROSSVOLT^{TM}$ SuperSOT™-3 i-Lo™ POP^{TM} $\mathsf{DOME}^\mathsf{TM}$ $Implied Disconnect^{\intercal_M}$ Power247™ SuperSOT™-6 PowerEdge™ SuperSOT™-8 EcoSPARK™ IntelliMAX™ E²CMOS™ ISOPLANAR™ PowerSaver™ SyncFET™ $\mathsf{PowerTrench}^{\mathbb{R}}$ EnSigna™ LittleFET™ TCM^TM QFET® $\mathsf{MICROCOUPLER}^{\mathsf{TM}}$ FACT[®] TinyBoost™ $\mathsf{FAST}^{\mathbb{B}}$ TinyBuck™ QSTM MicroFET™ . TinyPWM™ FASTr™ MicroPak™ QT Optoelectronics™ TinyPower™ FPS™ MICROWIRE™ Quiet Series™ TinyLogic[®] $RapidConfigure^{\intercal_{M}}$ $\mathsf{FRFET}^\mathsf{TM}$ MSX™ MSXPro™ RapidConnect™ TINYOPTO™

Across the board. Around the world.TM

The Power Franchise[®] ScalarPump[™] UHC[®]

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY LICENSES UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.