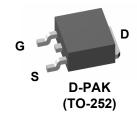
January 2006

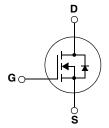
FDD5810 N-Channel PowerTrench[®] MOSFET

FAIRCHILD

SEMICONDUCTOR®

FDD5810 N-Channel PowerTrench[®] MOSFET 60V, 35A, 27m Ω

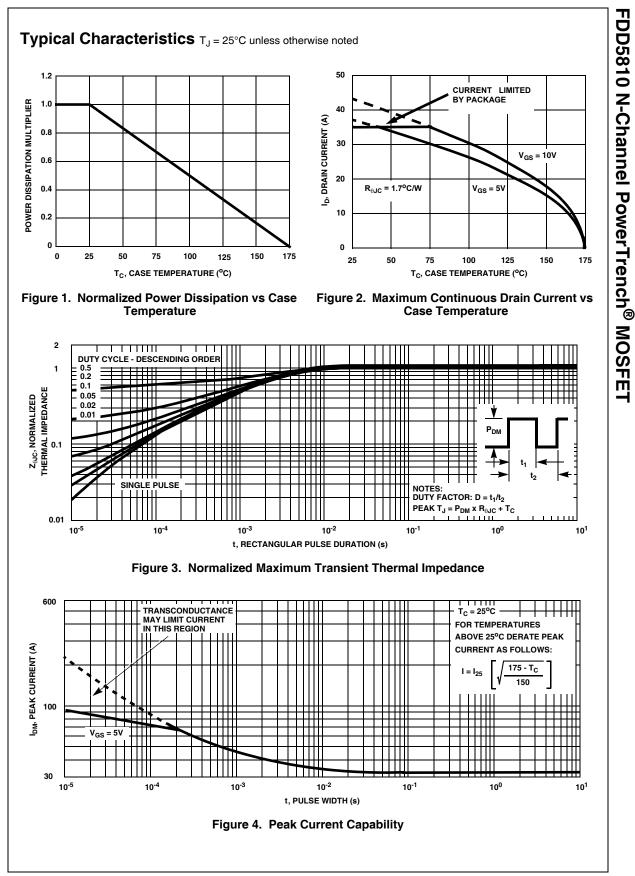

Features

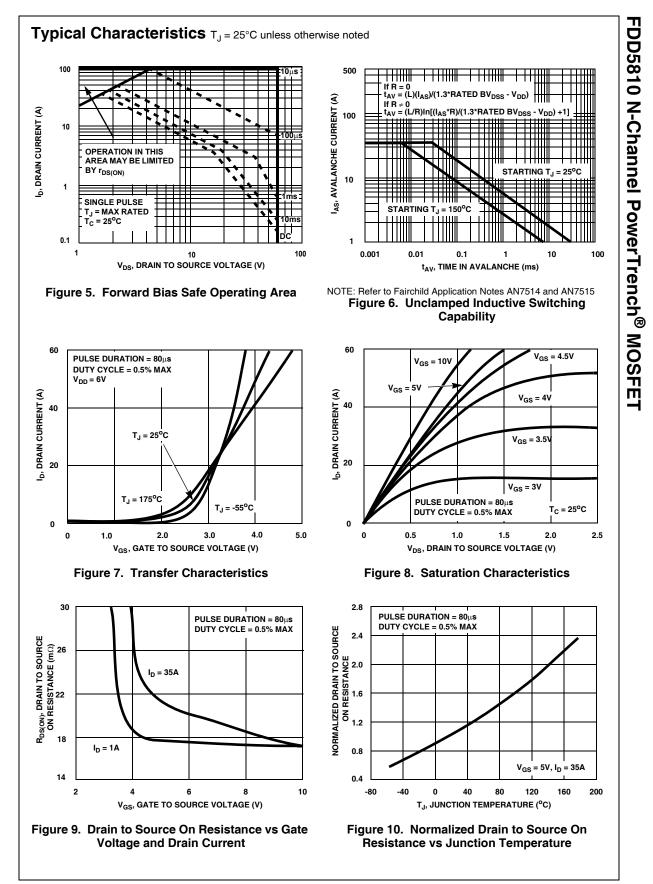

- $R_{DS(ON)} = 20.5m\Omega$ (Typ.), $V_{GS} = 5V$, $I_D = 35A$
- Q_{g(5)} = 13nC (Typ.), V_{GS} = 5V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse / Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

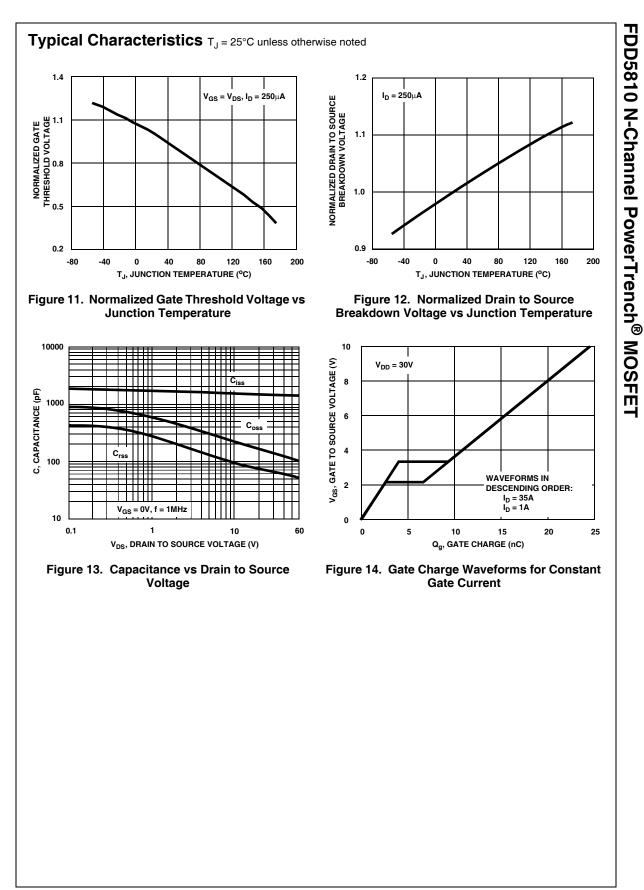
Applications

- Motor / Body Load Control
- ABS Systems
- Powertrain Management
- Injection System
- DC-DC converters and Off-line UPS
- Distributed Power Architecture and VRMs
- Primary Switch for 12V and 24V systems

Symbol	Parameter				Ratings			Units
/ _{DSS}	Drain to Source Voltage					60		V
/ _{GS}	Gate to Source Voltage					±20		V
	Drain Current Continuous ($V_{GS} = 10V, T_C = 52^{\circ}C$) (Note 1)					35		A
I _D	Drain Current Continuous ($V_{GS} = 5V, T_C = 42^{\circ}C$) (Note 1)					35		A
D		s (T _A = 25°C, V _{GS} = 10V,	with $R_{\theta JA} = 52^{\circ}C$	C/W)	7.7			A
	Pulsed					Figure 4		
AS	-	se Avalanche Energy (No	te 2)		45			mJ
Power Dissipation					88		W	
	Derate above 25°C				0.59			W/ºC
Γ _J , T _{STG}	Operating	and Storage Temperature	9		-:	55 to 175	•	°C
herma	I Charac	teristics						
$R_{ ext{ heta}JC}$	Thermal R	esistance Junction to Cas	se TO-252			1.7		°C/W
$R_{ hetaJA}$	Thermal R	esistance Junction to Am	bient TO-252, 1in	² copper pad area		52		°C/W
-	age Marking and Ordering Information			Reel Size	Tape Width		Qua	
FDD:	5610	FDD5810	TO-252AA	13	12m	Im	2500	units
	al Chara					_		
Symbol		Parameter	Test	Conditions	Min	Тур	Max	Unit
Off Chara	cteristics	;						
3 _{VDSS}	Drain to Sc	ource Breakdown Voltage	I _D = 250μA,	$V_{GS} = 0V$	60	-	-	V
				$V_{DS} = 48V$		-	1	
	Zawa Cata	Valtana Duain Ouwant	• DS = +0 •					μA
DSS	Zero Gate	Voltage Drain Current	$V_{\rm GS} = 40V$ $V_{\rm GS} = 0V$	$T_{C} = 150^{\circ}C$	-	-	250	
		Voltage Drain Current urce Leakage Current			-	-	250 ±100	nA
GSS	Gate to So	urce Leakage Current	$V_{GS} = 0V$					nA
_{GSS} Dn Chara	Gate to So	urce Leakage Current	V _{GS} = 0V V _{GS} = ±20V		-	-	±100	1
{GSS} Dn Chara	Gate to So	urce Leakage Current	$V{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$	I _D = 250μA		-	±100 2	nA V
{GSS} Dn Chara	Gate to So	urce Leakage Current	$V{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{O}$	I _D = 250μA _{3S} = 10V	-	- 1.6 16.5	±100 2 20	1
V _{GS(TH)}	Gate to So	urce Leakage Current	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{O}$ $I_{D} = 35A, V_{O}$	I _D = 250μΑ _{GS} = 10V _{GS} = 5V	-	-	±100 2	V
{GSS} Dn Chara	Gate to So	urce Leakage Current	$V{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{O}$ $I_{D} = 35A, V_{O}$ $I_{D} = 35A, V_{O}$	I _D = 250μΑ _{GS} = 10V _{GS} = 5V	-	- 1.6 16.5	±100 2 20	1
<u>GSS</u> Dn Chara V _{GS(TH)} R _{DS(ON)}	Gate to So cteristics Gate to So Drain to Sc	urce Leakage Current urce Threshold Voltage ource On Resistance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{O}$ $I_{D} = 35A, V_{O}$	I _D = 250μΑ _{GS} = 10V _{GS} = 5V	-	- 1.6 16.5 20.5	±100 2 20 27	V
<u>GSS</u> Dn Chara V _{GS(TH)} R _{DS(ON)}	Gate to So	urce Leakage Current urce Threshold Voltage ource On Resistance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{O}$ $I_{D} = 35A, V_{O}$ $I_{D} = 35A, V_{O}$	I _D = 250μΑ _{GS} = 10V _{GS} = 5V	-	- 1.6 16.5 20.5	±100 2 20 27	V
Igss Dn Chara V _{GS(TH)} R _{DS(ON)} Dynamic	Gate to So cteristics Gate to So Drain to Sc	urce Leakage Current urce Threshold Voltage ource On Resistance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $T_J = 175^{\circ}C$	I _D = 250μA _{3S} = 10V _{3S} = 5V _{3S} = 10V,	-	- 1.6 16.5 20.5	±100 2 20 27	V
GSS Dn Chara V _{GS(TH)} R _{DS(ON)} Dynamic C _{iss}	Gate to So cteristics Gate to So Drain to Sc Characte	urce Leakage Current urce Threshold Voltage ource On Resistance ristics	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $T_J = 175^{\circ}C$ $V_{DS} = 25V,$	I _D = 250μA _{3S} = 10V _{3S} = 5V _{3S} = 10V,	- 1 - -	- 1.6 16.5 20.5 39	±100 2 20 27 48	V
GSS Dn Chara V _{GS(TH)} R _{DS(ON)} Dynamic	Gate to So Cteristics Gate to So Drain to So Character Input Capa Output Cap	urce Leakage Current urce Threshold Voltage ource On Resistance ristics	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $T_J = 175^{\circ}C$	I _D = 250μA _{3S} = 10V _{3S} = 5V _{3S} = 10V,	-	- 1.6 16.5 20.5 39 1420	±100 2 20 27 48 1890	V mΩ pF
GSS Dn Chara /GS(TH) PDS(ON) Dynamic Ciss Coss Crss	Gate to So Cteristics Gate to So Drain to So Character Input Capa Output Cap	urce Leakage Current urce Threshold Voltage ource On Resistance ristics citance catance catance catance catance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $I_D = 35A, V_C$ $T_J = 175^{\circ}C$ $V_{DS} = 25V,$	I _D = 250μA _{3S} = 10V _{3S} = 5V _{3S} = 10V,	-	- 1.6 16.5 20.5 39 1420 150	±100 2 20 27 48 1890 200	V mΩ pF
GSS Dn Chara V _{GS(TH)} RDS(ON) Dynamic C _{iss} C _{oss}	Gate to So cteristics Gate to So Drain to Sc Character Input Capa Output Capa Reverse Tr Gate Resis	urce Leakage Current urce Threshold Voltage ource On Resistance ristics citance catance catance catance catance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $T_J = 175^{\circ}C$ $V_{DS} = 25V,$ $f = 1MHz$ $f = 1MHz$ $V_{GS} = 0V to$	$I_{D} = 250 \mu A$ $_{3S} = 10V$ $_{3S} = 5V$ $_{3S} = 10V,$ $V_{GS} = 0V,$ 10V	- - - - - -	- 1.6 16.5 20.5 39 1420 150 65	±100 2 20 27 48 1890 200 100	V mΩ pF pF
GSS Dn Chara (GS(TH) GS(ON) Coss	Gate to So cteristics Gate to So Drain to Sc Drain to Sc Character Input Capa Output Capa Reverse Tr Gate Resis Total Gate	urce Leakage Current urce Threshold Voltage ource On Resistance ristics citance pacitance ransfer Capacitance stance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $T_J = 175^{\circ}C$ $V_{DS} = 25V,$ $f = 1MHz$ $f = 1MHz$ $V_{GS} = 0V to$ $V_{GS} = 0V to$	$I_{D} = 250\mu A$ $G_{GS} = 10V$ $G_{GS} = 5V$ $G_{GS} = 10V,$ $V_{GS} = 0V,$ $10V$ $5V$	- - - - - -	- 1.6 16.5 20.5 39 1420 150 65 3.5	±100 2 20 27 48 1890 200 100 -	V mΩ pF pF Ω
GSS Dn Chara V _{GS(TH)} RDS(ON) Dynamic Criss Coss Criss Criss Coss Cris Criss Cris Criss Cri	Gate to So cteristics Gate to So Drain to So Drain to So Character Input Capa Output Capa Output Capa Gate Resis Total Gate Total Gate	urce Leakage Current urce Threshold Voltage ource On Resistance ristics incitance pacitance ransfer Capacitance stance Charge at 10V	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $T_J = 175^{\circ}C$ $V_{DS} = 25V,$ $f = 1MHz$ $f = 1MHz$ $V_{GS} = 0V to$	$I_{D} = 250\mu A$ $G_{GS} = 10V$ $G_{GS} = 5V$ $G_{GS} = 10V,$ $V_{GS} = 0V,$ $10V$ $5V$	- - - - - - - - -	- 1.6 16.5 20.5 39 1420 150 65 3.5 24	±100 2 20 27 48 1890 200 100 - 34	V mΩ pF pF Ω nC
GSS Dn Chara V _{GS(TH)} RDS(ON) Dynamic Diss Diss Diss Diss Diss RG	Gate to So cteristics Gate to So Drain to So Drain to So Character Input Capa Output Capa Output Capa Output Capa Total Gate Total Gate Threshold	urce Leakage Current urce Threshold Voltage ource On Resistance ristics icitance pacitance ransfer Capacitance stance Charge at 10V Charge at 5V	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $T_J = 175^{\circ}C$ $V_{DS} = 25V,$ $f = 1MHz$ $f = 1MHz$ $V_{GS} = 0V to$ $V_{GS} = 0V to$	$I_{D} = 250\mu A$ $G_{SS} = 10V$ $G_{SS} = 5V$ $G_{SS} = 10V,$ $V_{GS} = 0V,$ $10V$ $5V$	- - - - - - - - - - - - -	- 1.6 16.5 20.5 39 1420 150 65 3.5 24 13	±100 2 20 27 48 1890 200 100 - 34 18	V mΩ pF pF Ω nC
GSS Dn Chara V _{GS(TH)} RDS(ON) Dynamic Dynamic Ciss C	Gate to So cteristics Gate to So Drain to So Drain to So Character Input Capa Output Capa Output Capa Output Capa Total Gate Total Gate Threshold Gate to So	urce Leakage Current urce Threshold Voltage ource On Resistance ristics initiance pacitance cansfer Capacitance tance Charge at 10V Charge at 5V Gate Charge	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $I_D = 35A, V_G$ $T_J = 175^{\circ}C$ $V_{DS} = 25V,$ $f = 1MHz$ $f = 1MHz$ $V_{GS} = 0V to$ $V_{GS} = 0V to$	$I_{D} = 250\mu A$ $G_{SS} = 10V$ $G_{SS} = 5V$ $G_{SS} = 10V,$ $V_{GS} = 0V,$ $10V$ $5V$	- - - - - - - - - - - - - - - - - - -	- 1.6 16.5 20.5 39 1420 150 65 3.5 24 13 1.3	±100 2 20 27 48 1890 200 100 - 34 18 -	V mΩ pF pF Ω nC nC


Switching Characteristics						
t _{on}	Turn-On Time		-	-	130	ns
t _{d(on)}	Turn-On Delay Time		-	12	-	ns
t _r	Rise Time	V _{DD} = 30V, I _D = 35A	-	75	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 5V, R_{GS} = 11\Omega$	-	26	-	ns
t _f	Fall Time		-	34	-	ns
t _{off}	Turn-Off Time		-	-	90	ns


Drain-Source Diode Characteristics


V _{SD}	Source to Drain Diode Voltage	I _{SD} = 35A	-	-	1.25	V
		I _{SD} = 16A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	I _F = 35A, di/dt = 100A/μs	-	-	39	ns
Q _{rr}	Reverse Recovery Charge	I _F = 35A, di/dt = 100A/μs	-	-	35	nC

 $\label{eq:Notes: action of the state of th$

FDD5810 Rev. A (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™]	FAST [®] FASTr™ FPS™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I ² C™ <i>i-Lo</i> ™ ImpliedDisconnect™	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] ScalarPump [™]	SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TCM [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UltraFET [®] UniFET [™]
EnSigna™ FACT™ FACT Quiet Serie	ImpliedDisconnect [™] IntelliMAX [™] es [™] I. Around the world. [™]	OCXPro™ OPTOLOGIC [®] OPTOPLANAR™ PACMAN™	ScalarPump [™] SILENT SWITCHER [®] SMART START [™] SPM [™]	UniFET™ VCX™ Wire™
The Power Fran Programmable A	chise [®]	POP™ Power247™ PowerEdge™	Stealth™ SuperFET™ SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 118