Design Idea DI-88

 DPA-Switch PoE Detection and

Application	Device	Power Output	Input Voltage	Output Voltage	Topology
PoE/VoIP	DPA423G	6.49 W	$36-57 \mathrm{VDC}$	3.3 V	Flyback

Design Highlights

- Simple interface for Power Over Ethernet (PoE) Powered Devices (PDs)
- Includes PoE detection and classification circuits for all classes ($0,1,2$ and 3)
- Compliance to IEEE802.3af PoE standards verified by University of New Hampshire Interopability Consortium (UNH-IOC)*
- Includes under voltage lockout (42 VDC on, 34 VDC off)

PoE Detection and Classification

PoE is becoming widely adopted for networking and VoIP telecom applications. A typical PD solution is shown in Figure 1 and has a PoE interface circuit and a DPA-Switch DC-DC converter block (see EPR-68 for full details of operation of the DC-DC converter).

The PoE specification requires the PD to implement three functions: detection, classification and pass-switch connection.

Detection occurs as the input voltages rises from 2.5 to 10 VDC. Resistor R31 within the PD presents the detection

Figure 1. PoE Interface Circuit - Class 2.

VR31 inhibits the classification circuit at input voltages below 11 V. Components Q32, Q31 and R32 form a 350μ Abias current source programmed by resistor R33 working in conjunction with the base-emitter voltage of Q31. Transistor Q33 forms the classification current source programmed by resistor R34 working in conjunction with the 1.24 V voltage reference U31. Transistor Q34 disables the classification current source when Zener diode VR32 conducts (when the input voltage exceeds approximately 28 V).

Key Design Points

- For Class 0, remove components VR31, R32, R33, R34, R35, Q31, Q32, Q33, Q34 and U31.
- R34 values: Class 1, R34 = 133Ω; Class $2, \mathrm{R} 34=68.9 \Omega$; Class 3, R34 = 45.3Ω.
- It is possible to use either bipolar transistor or MOSFET pass-switches (Q35). A bipolar transistor is less expensive, but a MOSFET gives higher pass-switch efficiency. See design idea (DI-70) for details.
- The bias current source (Q31) is used to allow the classification current source to be turned-off for minimal power loss once input voltage exceeds 28 VDC. This limits the dissipation

Figure 2. Detection Impedance V-I Curve.

For the latest updates, visit www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. The products and applications illustrated herein (transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, EcoSmart, Clampless, E-Shield, Filterfuse,
PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2005, Power Integrations, Inc.

Power Integrations		5245 Hellyer Avenue	San Jose, California 95138	
MAIN PHONE NUMBER	APPLICATIONS HOTLINE	APPLICATIONS FAX	For a complete listing of worldwide sales offices,	
+1	$408-414-9200$	+1	$408-414-9660$	$+1408-414-9760$

