MECHANICALLY VARIABLE
 TTL DELAY LINE
 (SERIES DDU47F)

FEATURES

- Ideal for "Set and Forget" applications
- Multi-turn adjustment screw (approx. 15 turns)
- Surface-mount package
- Input \& output fully TTL interfaced \& buffered
($10 \mathrm{~T}^{2} \mathrm{~L}$ fan-out capability)
- Resolution:
0.25 ns typical
- Adjustment range: 5 ns to 25 ns
- Output rise time: $2 n s$ typical
- Min. input pulse width: 10 ns
- Power dissipation: 230 mW maximum
- Operating temperature: 0° to $70^{\circ} \mathrm{C}$ (Commercial)
-55° to $125^{\circ} \mathrm{C}$ (Military)

PACKAGES

$\begin{array}{ll}\text { DDU47F } & \text { (Commercial) } \\ \text { DDU47FM } & \text { (Military) }\end{array}$

FUNCTIONAL DESCRIPTION

The DDU47F-series device is a mechanically variable, FAST-TTL interfaced delay line. The signal input (IN) is reproduced at the tap output (OUT), shifted by an amount which can be adjusted between 5 ns and 25 ns . The device operates from a single 5 V supply and is TTL interfaced, capable of driving up to 10 TTL loads.

PIN DESCRIPTIONS

IN	Signal Input
OUT	Fixed Output
VCC	+5 V
GND	Ground
NC	No connection

SERIES SPECIFICATIONS

Functional Diagram

Package Dimensions

APPLICATION NOTES

HIGH FREQUENCY RESPONSE

The DDU47F tolerances are guaranteed for input pulse widths and periods greater than those specified in the test conditions. Although the device will function properly for pulse widths as small as 10 ns and periods as small 20 ns (for a symmetric input), the delays may deviate from their values at low frequency. However, for a given input condition, the deviation will be repeatable from pulse to pulse. Contact technical support at Data Delay Devices if your application
requires device testing at a specific input condition.

POWER SUPPLY BYPASSING

The DDU47F relies on a stable power supply to produce repeatable delays within the stated tolerances. A 0.1 uf capacitor from VCC to GND, located as close as possible to the VCC pin, is recommended. A wide VCC trace and a clean ground plane should be used.

DEVICE SPECIFICATIONS

TABLE 1: ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
DC Supply Voltage	$\mathrm{V}_{\text {CC }}$	-0.3	7.0	V	
Input Pin Voltage	$\mathrm{V}_{\text {IN }}$	-0.3	$\mathrm{~V}_{\text {DD }}+0.3$	V	
Storage Temperature	$\mathrm{T}_{\text {STRG }}$	-55	150	C	
Lead Temperature	$\mathrm{T}_{\text {LEAD }}$		300	C	10 sec

TABLE 2: DC ELECTRICAL CHARACTERISTICS
(0C to $70 \mathrm{C}, 4.75 \mathrm{~V}$ to 5.25 V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
High Level Output Voltage	V_{OH}	2.5	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=\mathrm{MAX}$ $\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$
Low Level Output Voltage	V_{OL}		0.35	0.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OL}}=\mathrm{MAX}$ $\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$
High Level Output Current	I_{OH}			-1.0	mA	
Low Level Output Current	I_{OL}			20.0	mA	
High Level Input Voltage	V_{IH}	2.0			V	
Low Level Input Voltage	V_{IL}			0.8	V	
Input Clamp Voltage	V_{IK}			-1.2	V	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$
Input Current at Maximum Input Voltage	$\mathrm{I}_{\mathrm{IHH}}$			0.1	mA	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$
High Level Input Current	I_{IH}			20	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$
Low Level Input Current	I_{IL}			-0.6	mA	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$
Short-circuit Output Current	I_{OS}	-60		-150	mA	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{MAX}$
Output High Fan-out				25	Unit Load	
Output Low Fan-out				12.5		

DELAY LINE AUTOMATED TESTING
 TEST CONDITIONS

INPUT:
Ambient Temperature: $25^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$
Supply Voltage (Vcc): $5.0 \mathrm{~V} \pm 0.1 \mathrm{~V}$
Input Pulse:
Source Impedance:
Rise/Fall Time:
Pulse Width:
Period:

OUTPUT:
Load: 1 FAST-TTL Gate
$C_{\text {load }}$: $\quad 5 \mathrm{pf} \pm 10 \%$
Threshold: 1.5 V (Rising \& Falling)

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Test Setup

Timing Diagram For Testing

