Dual USB Overcurrent Switch 750mA (V_{cc}) / 100mA ($\mathrm{V}_{\mathrm{SBY}}$)

Features

- Dual outputs, each with independent over-current protection circuitry and indicator
- Supports standby mode in PCs so that a peripheral can ramp down safely to a current $<100 \mathrm{~mA}$
- Low ON-resistance switches
- Up to $750 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{CC}}\right) / 100 \mathrm{~mA}\left(\mathrm{~V}_{\text {SBY }}\right)$ continuous current on each output
- Over-current limits at $750 \mathrm{~mA} / 100 \mathrm{~mA}$ respectively
- 10 msec min fault blanking delay on OC\# outputs prevents false overcurrent alarms
- Prevents backdrive current when host powered off
- Low operating current ($95 \mu \mathrm{~A}$ typ.)
- Low quiescent current when disabled ($<1 \mu \mathrm{~A}$ max)
- Small 8-Lead SOIC package

Applications

- PC motherboards with USB ports (i.e., can use a CM3501 for 2 ports or 2 CM3501s for 4 ports, etc)

Product Description

California Micro Devices' CM3501 is a dual port USB overcurrent power switch that selects between two independent 5 V inputs available on a PC, depending on the state of a logic input (SEL). The device has two pairs of power switches, and each pair is an analog "OR" function, providing a continuous voltage at both outputs during power transfer beween inputs.
V_{CC} is the main 5 V supply, which can be disabled in a PC, and $\mathrm{V}_{\text {SBY }}$ is the 5 V standby supply which is powered up whenever the PC has power. When the 'SEL' pin is at logic high, V_{CC} is the assigned input power supply. When 'SEL' is at logic low, $\mathrm{V}_{\text {SBY }}$ is used to power the output, and no current is taken from V_{cc}. Both switches can be deselected and switched off by not driving (floating) the 'SEL' input, which places the chip in low power mode.

Both pairs of switches have over-current protection. Depending on whether 'SEL' is high or low, a current over 750 mA or 100 mA respectively out of either output causes the device to enter a constant-current mode, where the output voltage is progressively reduced to prevent the current from increasing further. Each output is independent of the other, so if one of the switches is switched on but is not in overcurrent mode then it will remain switched on. The OC\# output becomes active only if the overcurrent condition exceeds a minimum continuous duration of 10 ms .
If the overcurrent condition is severe enough that the part heats up to the thermal limit $\mathrm{T}_{\text {MAX }}$, the switch turns off and the temperature cools down to $\mathrm{T}_{\mathrm{MIN}}$. The switch then turns on again, and the device heats up again, and so on, until the fault is removed.

The CM3501 also prevents backdrive current flowing into the host from the connected peripheral. This can occur when V_{CC} is removed as the host powers down, and the peripheral still has normal power applied. The 5 V from the peripheral can therefore be linked to the host's $V_{\text {Bus }}$, potentially causing backdrive current into the host and overloading the peripheral power supply.

Pin Diagram

Typical Application Circuit

Simplified Electrical Schematic

Absolute Maximum Ratings		
Parameter	Rating	Unit
ESD Protection (All pins, HBM)	± 2000	V
$\mathrm{~V}_{\text {CC, }} \mathrm{V}_{\text {SBY }}$ Input Voltage	$+5.6, \mathrm{GND}-0.5$	V
Storage Temperature Range Operating Ambient Operating Junction	-55 to +150	
Output Current Loading	-40 to +85	
Package Power Dissipation	Internally limited	${ }^{\circ} \mathrm{C}$

* - Internally limited

Operating Conditions (unless specified otherwise)		
Parameter	Range	Unit
$\mathrm{V}_{\text {CC }}$, $\mathrm{V}_{\text {SBY }}$ Input Voltage	4.5 to 5.5	V
Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
I LOAD per port ${ }^{\text {a }}$	$\begin{aligned} & \hline 0 \text { to } 750 \\ & 0 \text { to } 100 \end{aligned}$	mA

Electrical Operating Characteristics (over operating conditions unless specified otherwise)						
Symbol	Parameter	Conditions	MIN	TYP	MAX	UNIT
UVLO	$\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{SBY}}$ voltage under which circuit locks out - will not operate	$\mathrm{T}=25^{\circ} \mathrm{C}$		2.2	2.5	V
$V_{\text {OUt1 }}$, $V_{\text {OUT2 }}$	Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{SEL}=5 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$	4.9			V
$\mathrm{R}_{\text {SW1 }}$	$\mathrm{V}_{\text {CC }}$ Switch ON-Resistance	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=0 \text { to } 750 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$		0.13	0.20	Ω
$\mathrm{R}_{\text {SW2 }}$	$\mathrm{V}_{\text {SBY }}$ Switch ON-Resistance	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=0 \text { to } 100 \mathrm{~mA} ; \mathrm{V}_{\mathrm{SBY}}=5 \mathrm{~V} \\ & \mathrm{~T}=25^{\circ} \mathrm{C} \end{aligned}$			1.4	Ω
Ilim vcc	$\mathrm{V}_{\text {CC }}$ over-current limit	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	750			mA
ILIM VSBY	$\mathrm{V}_{\text {SBY }}$ over-current limit	$\mathrm{V}_{\text {SBY }}=5 \mathrm{~V}$	100			mA
$\mathrm{t}_{\text {fBD }}$	Time delay from overcurrent detection to OC output indication (fault blanking delay)		10	20		ms
$\mathrm{T}_{\text {MAX }}$	Temperature at which hot switch turns off during overcurrent			150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {MIN }}$	Temperature at which cool switch turns on, after cooling from $\mathrm{T}_{\text {Max }}$			125		${ }^{\circ} \mathrm{C}$
$\begin{array}{\|l\|} \hline \mathrm{I}_{\mathrm{RCC}} \\ \mathrm{I}_{\mathrm{RSBY}} \\ \hline \end{array}$	Reverse leakage from outputs to inputs - backdrive current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, SEL floating $V_{\text {SBY }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, SEL floating		$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$
ICCON	V_{CC} operating supply current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{SEL}=$ high, $\mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA}$		95		$\mu \mathrm{A}$
$\mathrm{I}_{\text {SBY OFF }}$	$\mathrm{V}_{\text {SBY }}$ standby supply current	$\mathrm{V}_{\text {SBY }}=5 \mathrm{~V}$, SEL=high, $\mathrm{I}_{\text {LOAD }}=0 \mathrm{~mA}$		1		$\mu \mathrm{A}$
$\mathrm{I}_{\text {SBY ON }}$	$\mathrm{V}_{\text {SBY }}$ operating supply current	$\mathrm{V}_{\text {SBY }}=5 \mathrm{~V}, \mathrm{SEL}=\mathrm{low}, \mathrm{l}_{\text {LOAD }}=0 \mathrm{~mA}$		95		$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCHQ }}$	$\mathrm{V}_{\text {cc }}$ higher, quiescent current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SBY}}<\mathrm{V}_{\mathrm{CC}}$, SEL floating		40		$\mu \mathrm{A}$
$\mathrm{I}_{\text {SBYLQ }}$	$\mathrm{V}_{\text {SBY }}$ lower, quiescent current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SBY }}<\mathrm{V}_{\mathrm{CC}}$, SEL floating		1		$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCLQ }}$	$\mathrm{V}_{\text {CC }}$ lower, quiescent current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SBY }}>\mathrm{V}_{\text {CC }}$, SEL floating		1		$\mu \mathrm{A}$
	$\mathrm{V}_{\text {SBY }}$ higher, quiescent current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\text {SBY }}>\mathrm{V}_{\mathrm{CC}}$, SEL floating		40		$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH-EN }}$	EN\# input Logic-1 threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	2			V
$\mathrm{V}_{\text {IL-EN }}$	EN\# input Logic-0 threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$			0.8	V
Vol-Oc	OC\# output Logic-0 threshold	$\mathrm{l}_{\mathrm{Cc}}=1 \mathrm{~mA}$ to V_{cc}			0.4	V

Pin Functions

$\mathrm{V}_{\text {cc }}$ is the higher current power source. Whenever the SEL pin is above 2 V it will be selected, and $\mathrm{V}_{\text {SBY }}$ will be deselected.
$\mathrm{V}_{\text {SBY }}$ is the lower current power source. Whenever the SEL pin is below 0.8 V it will be selected, and $\mathrm{V}_{\text {cc }}$ will be deselected. The two $\mathrm{V}_{\text {SBY }}$ power switches can only supply 100 mA .

Vout1 provides the power for a USB port. The internal MOSFET switches are designed for low voltage drops from the voltage input pins at their full rated currents.
$V_{\text {OUT2 }}$ provides the power for a second USB port. The internal MOSFET switches are designed for low voltage drops from the voltage input pins at their full rated currents.

Current loads of up to 750 mA are allowed (from Vcc). Current loads above 750 mA may cause the constantcurrent limiting circuit to operate - reducing the output voltage.

Continuous over-current loads will cause the part's internal temperature to rise. If the internal temperature exceeds 150 ' C then any switch that is in overcurrent mode will be immediately turned off. Any switch that is not in overcurrent mode will remain on - it will not be affected by the over-temperature detection. Once the part has cooled to 125 'C then the switch or switches that were in overcurrent mode will be automatically turned on again.

During the cold-start interval when the input is initially applied, internal circuitry provides a soft turn-on for the switches, which limits peak in-rush current.

SEL is the 3 -level logic input pin that is used to control which of the power switch pairs are turned on. Set SEL high to select V_{CC}, set SEL low to select $\mathrm{V}_{\mathrm{SBY}}$, or allow SEL to float to deselect both power switches. The external device driving the SEL pin must able to source and sink $100 \mu \mathrm{~A}$ while maintaining the proper $\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{IH}}$ levels.

OC1\#, OC2\# are independent, active low opendrain outputs, indicating an overcurrent fault condition has been detected at $\mathrm{V}_{\text {out } 1}$ or $\mathrm{V}_{\text {out2. }}$. There is a builtin 10 msec (min.) fault blanking period after the overcurrent fault condition has been detected, before these outputs become active. The OC\# outputs become deasserted only when both the overcurrent condition stops and when the voltage drop across the switch is less than 1V. External pull-up resistors of 10k - 100k are required if the OC\# outputs are used.

GND is the negative reference for all voltages.

Pin No.		Symbol
1	GND	Description Functions
2	$\mathrm{~V}_{\mathrm{CC}}$	Hegative reference for all voltages.
3	$\mathrm{~V}_{\text {SBY }}$	Standby positive supply input. Also provides internal power.
4	SEL	3-level logic input. High = $\mathrm{V}_{\text {CC }}$, Low $=\mathrm{V}_{\text {SBY }}$, Floating = both off
5	OC2\#	Active low when $\mathrm{V}_{\text {OUT2 }}$ is in overcurrent mode.
6	$\mathrm{~V}_{\text {OUT2 }}$	Output voltage internally switched to either V_{CC} or $\mathrm{V}_{\text {SBY }}$ input source.
7	$\mathrm{~V}_{\text {OUT1 }}$	Output voltage internally switched to either V_{CC} or $\mathrm{V}_{\text {SBY }}$ input source.
8	OC1\#	Active low when $\mathrm{V}_{\text {OUT1 }}$ is in overcurrent mode.

STANDARD PART ORDERING INFORMATION

Pins	Package	Ordering Part Number' $^{\prime}$	Part Marking
8	SOIC	CM3501-02SN	CM3501-02SN

Note 1: Parts are shipped in Tape \& Reel form unless otherwise specified.

OC\# Response to Momentary Overcurrent Fault

OC\# Response to Continuous Overcurrent Fault

Note: The other port stays on (unless it is also in current limit.)

CALIFORNIA MICRO DEVICES

Typical Operating Characteristics

SOIC-8 Package Dimensions

