High Dynamic Range Low Noise GaAs FET

August 2006 - Rev 03-Aug-06

Features

- □ Low-Noise Figure from 0.8 to 2.0 GHz
- High Gain
- **High Intercept Point**
- □ Highly Stable
- \Box Easily Matched to 50 Ω
- □ 70 mil Package

Applications

- **Cellular Base Stations**
- **D** PCS Base Stations
- Industrial Data Networks

Description

Celeritek's CFB0301 is a high performance GaAs MESFET with 600 μ m gate width and 0.25 μ m gate length. The low noise figure and high intercept point of this device makes it well suited for use as the low-noise amplifier of the

Electrical Specifications (TA = 25°C, 2 GHz)

base station receiver in PCS, Japanese PHS, AMPS, GSM and other communications systems. The CFB0301 is in an industry-standard 70 mil package. It is surface mountable and available in tape and reel.

Parameters	Conditions	Min	Тур	Standard Deviation ⁴	Мах	Units
$\overline{V_d} = 2V, I_d = 25 \text{ mA}$						
Noise Figure ²			0.6			dB
Associated Gain ²	@ Noise Figure		16			dB
$P_{out}^{1,3}$	P ₋₁		15.0			dBm
IP ₃ ³	+5 dBm P _{OUT} /Tone		24			dBm
I _d ³	@ P ₋₁		35			mA
$\overline{V_d} = 4V, I_d = 30 \text{ mA}$						
Noise Figure ²			0.7			dB
Associated Gain ²	@ Noise Figure		17			dB
$P_{out}^{1,3}$	P ₋₁		20.5			dBm
IP ₃ ³	+5 dBm P _{OUT} /Tone		30			dBm
I _d ³	@ P ₋₁		56			mA
$\overline{V_d} = 4V, I_d = 70 \text{ mA}$						
Noise Figure ²			0.8	0.08	0.9	dB
Associated Gain ²	@ Noise Figure	16	17	0.4		dB
P _{out} ¹ , ³	P ₋₁	20	21	0.4		dBm
IP ₃ ³	+5 dBm P _{OUT} /Tone	32	34	0.9		dBm
I _d ³	@ P ₋₁		77			mA
Transconductance	$V_{ds} = 2 V, V_{gs} = 0 V$	70	140			mho
Saturated Drain Current	$V_{ds} = 2 V, V_{gs} = 0 V$	120	150		180	mA
Pinchoff Voltages	$V_{ds} = 2 V, I_{ds} = 1 mA$	-2.5	-1.3		-0.5	V
Thermal Resistance	@ $T_{case} = 150^{\circ}C$ liquid crystal test		200			°C/W

Notes: 1. @ $T_{case} = 25^{\circ}C$. Derate 5 mW/°C for $T_{case} > 25^{\circ}C$. 2. Input matched for low noise.

3. Matched for power transfer.

4. Standard deviation based on 10 wafers randomly selected and is provided as an estimate of the distribution only. Trademarks are the property of their respected owners.

Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com

Page 1 of 3

Characteristic Data and Specifications are subject to change without notice. ©2006 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.

Mimix

August 2006 - Rev 03-Aug-06

Absolute Maximum Ratings

		-		
Frequency (GHz)	F _{min} ¹ (dB)	Gamn Mag	Rn/50	
0.8	0.4	0.6	27	0.10
0.8	0.4	0.0	27	0.19
1.0	0.4	0.6	29	0.17
1.2	0.4	0.6	32	0.18
1.4	0.4	0.6	35	0.18
1.6	0.4	0.5	38	0.17
1.8	0.4	0.5	41	0.16
2.0	0.5	0.5	45	0.15
2.2	0.5	0.5	49	0.15
2.4	0.5	0.5	54	0.14
2.6	0.5	0.5	60	0.13

Typical Noise Parameters ($V_{ds} = 4 \text{ V}, I_{ds} = 30 \text{ mA}$)

Note: 1. Fmin values reflect the circuit losses in the test fixture when matched to optimum noise figure.

Typical Performance

Optimum Noise Figure vs $I_{ds} \& V_{ds}$ Frequency = 2 GHz

Typical Scattering Parameters (TA = 25° C, V_{DS} = 2 V, I_{DS} = 25 mA)

Frequency	S ₁₁		S ₂₁		S ₁₂		S ₂₂	
(ĠHz)	Mag	Ang	Mag (dB)	Ang	MAG (dB)	ANG	MAG	ANG
0.5	0.98	-20	7.17	161	0.02	78	0.42	-11
1.0	0.94	-40	6.90	148	0.03	70	0.41	-24
2.0	0.85	-76	6.00	119	0.05	52	0.36	-46
3.0	0.76	-108	5.00	95	0.07	38	0.32	-65
4.0	0.70	-130	4.30	75	0.08	30	0.30	-75
5.0	0.64	-150	3.83	55	0.09	20	0.27	-85

Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com Page 2 of 3

Characteristic Data and Specifications are subject to change without notice. ©2006 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.

o Movimum Dotingo

8-							
Parameter	Symbol	Rating					
Drain-Source Voltage	V _{ds}	+8V					
Gate-Source Voltage	V _{gs}	-5V					
Drain Current	Ids	Idss					
Continuous Dissipation ¹	Pt	750 mW					
Channel Temperature	Tch	175°C					
Storage Temperature	Tstg	-65°C to +150°C					

CFB0301

High Dynamic Range Low Noise GaAs FET

August 2006 - Rev 03-Aug-06

Test Circuit Evaluation Board Schematic

Evaluation Board Substrate: ER = 4.65Thickness = 0.036 Transmission Lines (Dimensions in mm.): T1: 0.203 (W) x 11.55 (L) T2: 0.203 (W) x 5.05 (L)

PB-CFB0301 Evaluation Board

(SMA Connectors not shown)

Evaluation Board Parts List

Item	Reference Designator	Description	Quantity	Manufacturer	Part Number
1	B21	Chip ferrite bead 0805	1	World Products	HB-1H2012-260JT
2	C23	Capacitor, 1000pF, 0603	1	Rohm	MCH185A102JK
3	C21, C24, C26, C28-C37	Capacitor, 39pF, 0603	13	Rohm	MCH185A039JK
4	C25	Capacitor, 0.01µF, 0603	1	Rohm	MCH185A103JK
5	L26, L28	Inductor, 82nH, INDA5T-3	2	Toko	LL2012-F8NK
6	R21	Resistor, 5.6 Ohm, 0603	1	Dale	RCWP575 560
7	R22, R23	Resistor, 18 Ohm, 0603	2	Dale	RCWP575 181
8	R26	Resistor, 8.2 Ohm, 0603	1	Dale	RCWP575 820

Ordering Information

The CFB0301GaAs FET is available in tape and reel. An evaluation board is also available. Ordering part numbers are listed.Part Number for OrderingFunctionPackage

CFB0301 CFB0301-000T PB-CFB0301 Low-Noise high dynamic range FET Low-Noise high dynamic range FET Evaluation Board

70 mil package

70 mil package in tape and reel

Mimix Broadband, Inc., 10795 Rockley Rd., Houston, Texas 77099 Tel: 281.988.4600 Fax: 281.988.4615 mimixbroadband.com

Page 3 of 3

Characteristic Data and Specifications are subject to change without notice. ©2006 Mimix Broadband, Inc. Export of this item may require appropriate export licensing from the U.S. Government. In purchasing these parts, U.S. Domestic customers accept their obligation to be compliant with U.S. Export Laws.

CFB0301