CD1865

Intelligent Eight-Channel Communications Controller

Product Features

= Eight full-duplex asynchronous channels
supporting data rates up to 115.2 kbps

Note: To support this data rate, the
specified system clock frequency is
required.

= Register-based interrupt acknowledges
eliminate need for separate interrupt
acknowledge signals

= Automatic prioritizing scheme alows
deviceto respond to an interrupt
acknowledge with the highest internal
interrupt pending (host-programmabl e)

= Sophisticated interrupt schemes
—Vectored interrupts
—Fair Share interrupts

— Good Datall interrupts for improved
throughput

— Simultaneousinterrupt requestsfor three
classes of interrupts: Rx, Tx, and
modem state changes

= Independent baud-rate generators for each
channel/direction

Datasheet

Software compatibility with the CD180 and
CD1864 devices

Generation and detection of special
characters

Automatic flow control

—In-band (Xon, Xoff generation, and
detection)

— Out-of-band (DTR/DSR or RTS/CTS)

= On-chip FIFO — 8 bytes each for Rx, TX,

and Status
Line break detection and generation

M uultiple-chip daisy-chain cascading
feature

Odd, even, forced, or no parity

modem/general -purpose 1/0 signal's per
channel

System clock up to 66 MHz (x2), 33MHz
(x1)
CMOS technology in 100-pin MQFP

As of May 18, 2001, this document replaces the Basis
Communications Corp. document CL-CD1865 — Intelligent 8-Channel Communications Controller. May 2001

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The CD1865 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 2001
*Third-party brands and names are the property of their respective owners.

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

Contents

1.0

2.0

3.0
4.0

5.0

6.0

Datasheet

OVEBIVIBW ...ttt ettt 10
1.1 Theory Of OPEIatiONcooii ittt e e e e e e e e 10
CONVENTIONS ..ottt 13
2.1 FaN o] o] 13V T LT LR PPR 13
2.2 ol 0] 1Y/ 0 01 PSP PPPTR 13
Device Selection CoNSIderations ... 15
PN INFOrMatiON ... e 16
4.1 [T T = Vo = PR 16
4.2 PiN ASSIgNMENTS.....cci i e e e e s e e e rraaaa e 17
FUunNctional DeSCIIPLION ... s 18
5.1 T o o [N L1 o] o PP 18
5.2 Ta (=T g @ o =T = 11 o] o RS 20
5.3 Service Request and Interrupt OPeration.............eeevveeeiieivcciiiieieeere e e sseeeeeenens 26
5.3.1 Theory Of OPErationccuvieeieeiiiiiiiiiieiee et e e e ses s ee e e e e e s e e s enannreaeeees 26
5.3.2 Internal Implementation of the Service Request LogiC.............cccvvvveeeen. 28
5.3.3 Priorities and Fair SNare.........cccoooviiiiiiie e 31
5.4 Types Of SEIVICE REQUESESuiiiiiiiiiiee et ee e e e e 31
5.4.1 ReCeIVE SEerviCe REQUESESccceiiiiiiiiiiiiiiee e e er e e e e e e 32
5.4.2 Transmit SErvice REQUESEScccuuviiiiiiiie e a e ee e 35
5.4.3 Modem Signal Change Service REQUESTES...........cccvvviiieeiieeee e, 35
5.5 Implementing SErvice REQUESTES..........uuuiiiiiiie it ee e e e e e e e e 35
5.5.1 Method la — Full Interrupt — Type A, Three-Level Interrupt
with Three-Level ACKNOWIEAQEccooiiieiiiiiiiiiieee e 37
5.5.2 Method 1b — Full Interrupt — Type B, Three-Level
Interrupt with Single-Level Acknowledgecccooiieeiiiiiieeciiiieeeee 38
5.5.3 Method 2b — Interrupt Interface, Single-Level
Interrupt with Single-Level Acknowledge ... 39
5.5.4 Method 3b — Polled Interface.........ccoceeeeieeiiiiii e 40
5.5.5 Comparison of Interrupt and Polled Code Sequences...........cccocvveeerne 42
5.5.6 Cascading Service Requests with Multiple CD1865sSccccccvveeeenne 43
5.5.7 Multiple CD1865s without Cascading..........c.ccceveeerririeeiiiiieeee e 44
5.5.8 Acknowledging Service REQUESEScueeeeiiiiiieeiiiieee s 44
System Bus Interface and System CIoCK ..., 46
6.1 System Interface CoNSIAErationscoveeviiiiiiiiiee e e 47
6.2 System Clock and Bit Rate OPLiONScc.vvviiiiiiieeeee e a7
6.2.1 SYSEM CIOCK .eeeeiiiiiiiiiiee e a e e s 47
6.2.2 EXIErNAl CIOCK ...vviiiiiiiiieie e 47
LS00 T 1 O o Tod | @ o] 1o o SRR 48
6.2.4 Bit RAte OPLONS ... ieee et r e e e 48
6.2.5 Maximum Throughput LImMitS........cccccuiriiiieeee e 51
6.3 CD1865 Basic Bus Interface and AdAresSsingcceveeevevviceiiieireeeeess e seiiiieeeeens 51
6.3.1 Intel, Versus Motorola, Interface Signals and Addressing...................... 51
3

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

6.3.2 Unclocked Versus Clocked Bus Interfacecccccceveeeeiiiiiiiiiiiieenneeeenn. 52
6.4 INtErface EXAMPIES ...oooi ittt a e e e e e 54
6.4.1 Interfacing to 80X86-Family ProCeSSOrscccueeeiiiieeeiiiiiiiiiiiiceee e, 55
6.4.2 Interfacing to 680X0-Family ProCeSSOrsSuuueeeiieieaeiiiiiiiiiiiieeeeeeenn, 55
6.4.3 Interfacing to the VME BUSueiiiiiiiiiiiiee e 55
7.0 Serial INTEITACESooii s 58
7.1 1ot 1)Y= G @ o =T = 11T o I PSSR 58
4% T = 7= 13 (o @ o 1= - [o SRS 58
7.1.2 Receive FIFO OPEerationccccuvvviiiieiieeiis s eeiiieie e e e e e e e e s ssiareaeeeaaeeae e 58
7.1.3 FIFO Timer OPEerationsSccccuvriririeiieeeieesiiiirnieeereeeeeeesssessnsnnnnseeeeeaaeens 60
7.1.4 ReCEeIVE SErviCe REQUESEScuviiiiieiieeeie ittt eee e e e e e s snrare e e e e e e 60
7.1.5 Receive Good Data%o Service ReqUESE...........ccoviiiieeiniiiiiie e 61
7.1.6 Receive Exception Service REqUESToociiiiiiiiiieie e 61
T 1.7 TYPES OF EITOIS..eeiiiiiiiieeee ettt e e e e e 62
7.1.8 Types Of EXCEPLIONS ...ccciiiii ittt a e e e e 62
7.1.9 FIOW-Control CharaCterseueieieiieaiiiiiiiieiee e e e e e e e e e e 63
7.1.10 Programming NOEScccoiiiiiiiiiiiiie it e e e 68
7.2 TranSMItter OPEIALIONcvueiieiiiiiee ettt et e e 68
7.2.1 BaSiC OPEIratiON.....c.uuviieiiiiiie ettt ettt e 68
7.2.2 FIFO OPEIAtON .ottt 69
7.2.3 Transmit Service REQUESESuuiiiiiiiiieeiiiiiee e 69
7.2.4 Special Transmitter COMMANASuuvrieeiiiiiie et 70

7.2.5 Special Character Transmission by Send
Special Character Commandccccoiiiiriiiee e 70
7.2.6 Embedded Transmit COMMANAS.........c.ceeeeiiiiiiieeiiiiie e 70
7.27 SENAING BreakKS......ceuiiiieeeii ittt e e e e e e e e 71
7.2.8 Sending Inter-Character DelayS..........ccoeevveiiiiiiiriiiee e e 71
7.2.9 Summary of Special Transmitter Commands.........cccccccovvvevivvrivveeeeeeeennn, 71
7.3 FIOW CONEIOL ..eiiiiieee ettt et ee e snnaee s 72
7.3.1 Receiver FIOW CONtrol........ccooiiiiiiiiiiiiee ettt 72
7.3.2 Receiver Hardware (Out-of-Band) Flow Controlcccccvvvvvveennenennn. 73
7.3.3 Receiver Software (In-Band) Flow Control..........cccccceeeeviiiiiiiiiiineeeeeenn, 74
7.3.4 Transmitter FIOW CONIOl........ccueiiiiiiiiiie e 75
7.3.5 Transmitter Hardware (Out-of-Band) Flow Controlcccccvvveeeeenn. 76
7.3.6 Transmitter Software (In-Band) Flow Control..............ccooecviiiiineeeeeennn, 76
7.4 Modem Signals and General-Purpose /Occccuuviiiiieeee e 78
7.4.1 Generating Service Requests with Modem Pins..........cccccvvvvviieeneeeenn, 80
7.4.2 Using Modem Pins as General-Purpose /Occccccveeeeviiiiiciiiiieneeeenn, 80
7.5 Testing the CD1865 — Lo0OPhack TESESuuviiiiieeeiiiiiiiieeieeee e 80
8.0 ProgrammMingccccceiiiieceeeeeeee et 83
8.1 TYPES Of REGISIEIS ...t e e e e e e e s e e e eaaee s 83
8.2 ACCESS DULY CYCIE ... e e rrr e e e e e e 84
8.3 Accessing FIFOs Versus Other REQISIENSccceeviiiiciiiiieiieee e 84
8.4 a1 2= 110] [PPSR 84
8.5 Global Register INtialization.............cccviiiiiieiie e 86
8.6 Service Request INItIaliZationccvuviiiiiiieie e 86
8.7 PIESCAIRT ...ttt 86
8.8 Channel Initialization and Changes..........cuuiveiieeii e 87

4 Datasheet

9.0

10.0

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

8.9 TranSMITING DALAeeeieiieeieei et e e e e e e e e e e e e e annanes 87
8.10 RECEIVING DATA ... uieeiieiiiiiee ettt ettt e e e e e e e et e e e e e e e e e e e e annnnes 88
8.11 Programming EXamPIESccooiiiiiiiiiie ettt 88
8.11.1 Programming the Service Match RegiSters..........ooooiiiiiiiiiiiieeniieiee 88

8.11.2 CD1865 INItIaliZatiONoocvviieiiiiiiiieii e 88

8.11.3 BasSiC /O OPEIAtiONScceiuriiieeiiiiiie ettt et 90

8.11.4 Interrupt ReSpoNnse OPEerationsceeeieeieeaiiiiiiieiiiieaaeae e e eienieeee e 90

8.11.5 Polled MOde OPEIatiON.........ueiiieiiiiiiee ittt e e 93
Detailed Register DESCIIPLIONS ..o 94
9.1 Register Map QUICK REfEIENCEccceiiiiiieeee e 94
9.2 (€1 [0] o Tz LI == T0 15 (=] £ 97
9.2.1 Miscellaneous REQGISIEISooiiiiiiiiiiiiiieie et 98

9.2.2 Configuration ReQISIEIS......ccceiiiiiiieeeeee e 98

9.2.3 Service Request/Interrupt Control Registers........ccccovevivieeienniiinenennn 103

9.3 Indexed INdIreCt REQISTEIS.coi i 108
9.3.1 Receive Data Count ReQISTEr.........uuuuiiiiiiieiaiiiiiiie e 108

9.3.2 Receive Data REJISIENc.oiiiiiiiiiiee e 109

9.3.3 Receive Character Status RegiStEr..........evviiiiiiiiieiiiiie e 110

9.3.4 Transmit Data REQISIErcooiiiiiiiiiiiiiie e 111

9.3.5 End-of-Service Request REJISIEr.........couiiiiiiiiiiiie e 111

9.4 Channel REQISIEIS....coiiiieeii et a e 111
9.4.1 ENADIE REQISIEN ... 112

9.4.2 Channel Command REQISIENuuviiiiiiiiiieiiiieie e 112

9.4.3 Channel Option ReGISIEr Lccociiiiiiieiiiiieie e 116

9.4.4 Channel Option REQISIEr 2ccoiiiiiiiiee e 116

9.4.5 Channel Option ReJISIEr 3ociiiiiiiiieiiiiee e 117

9.4.6 Channel Control Status ReQISIErccoocuiiviiiiiiiiie e 118

9.4.7 ReceiVer Bit REQISTET.......cocuiiiiiiiiiii e 119

9.4.8 Receive Time-Out Period RegISter..........uvviiiiiiiiieiiiiiie e 120

9.4.9 Receive Bit Rate Period Registers (High/LOW).........cccccveiriiiiiiiiiinnnnnn. 120

9.4.10 Transmit Bit Rate Period Registers (High/LOW)...........cccovviiieiniiiienenn. 121

9.4.11 Special Character REGISter 1c.uuvviiiiiiiiieiiiiiie et 121

9.4.12 Special Character REQISTEr 2c.uuviiiiiiiiiieiiieiee e 122

9.4.13 Special Character REgISter 3c.uuviiiiiiiiiieiieiie e 122

9.4.14 Special Character REQISTEr 4uuviiiiiiiiiieiiieeie et 123

9.4.15 Modem Change REQISIENcoiiiiiiiiiiiiii e 123

9.4.16 Modem Change Option Register L.........ccccvveiiiiiiieiiiiiiie e 124

9.4.17 Modem Change Option RegISIEr 2........cuevviiiiiiiiieiiieee e 125

9.4.18 Modem Signal Value RegISter..........cccuiiiiiiiiiiiiiiieiie et 125

9.4.19 Modem Signal Value Request-to-Send Register..........ccccoovvveverinnneenn. 126

9.4.20 Modem Signal Value Data-Terminal-Ready Registercccccuveeen.. 126
Electrical SpPecifiCatioNS ... 127
10.1 Absolute Maximum RatINGS........uuuriiiiieeeeriiiiiiirieerr e e e e ssessiniarerereeeeeeesssnnnnnne 127
10.2 Recommended Operating ConditiONScccvvviiiriiiee e e e e e 127
10.3 DC Electrical CharaCteriStiCS.........covovviirriiiiiieiie e 127
10.4 Index of Timing INfOrmMationccuuveiieeiiiiiiie e 128
10.5 AC Electrical CharaCteriStiCSc.uoruuvrerieieiiieree e 128
10.5.1 Clocked BUS INEIACEcooieiiiiieiieie e 128

5

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

10.5.2 Unclocked BUS INTEITACEeviviiiiiiiiiciie e 136
11.0 Package SpecCifiCatioNS ... 145
12.0 Ordering INfOrmMatioNc.ooiiiiicccccce e 146
O X ettt 147
Figures
1 Functional BIOCK DIiagramccccuuiiiiiiiee et e e e e e e e e e e e e e e s snannnee s 9
2 Internal BIOCK Diagramcuuiiiiiieieee ettt e e e s stee e e e e e e e e s e e saee e 22
3 Foreground/Background Internal SIrUCtUreccuvvvieiiiiieeeiiiiiee e 24
4 Internal Operation FIOW Chart ... 25
5 Internal Service Acknowledge DecCiSioN Tree.......ccuiiiiiiiiiiiiiiiiiiieeie e 30
6 Internal Fair-Share OPEration ... 31
7 Receive Timer OPErationcooiiieiiiieiie et eeee e e e e e e e e 34
8 Three-Level Interrupt with Three-Level Acknowledge Example............cccccceeeee. 38
9 Three-Level Interrupt with Single-Level Acknowledge Exampleccccceoneee. 39
10 Single-Level Interrupt with Single-Level Acknowledge Example 40
11 Simple Software Polled Interface EXample ..o, 41
12 Polled COUE SEUUENCEoeiiiiiiiiie ettt 42
13 INtErTUPE COUE SEUUENCE ...ttt et e e e 43
14 INternal BIOCK DIBQGIAIMcccoiiiiiieiiiiiiiee ettt e ee e 46
15 2% CIOCK OPLION. ..eeiiiitiie ettt et e e e a7
10 Z TP 48
17 Typical Unclocked BUs INtEIface..........coooiiiiiiiiiiiiiiiiiice e 53
18 Typical Clocked BUS INtEITACE..........ccooiiiiiiiiiie e 54
19 INCOITECt VME INTEITACEooiiiiiiiiie it 56
20 COorreCt VME INTEITACE. ..ottt 57
21 Bit Synchronization in CDL8B65ccueiiiiiiiiiieiiiee e 58
22 RECEIVE OPEIALIONeiiiiiiiiii ettt 59
23 NO NeW Data TiMer LOGICciuuurieeiiriiieeeiiiiiee et ettt e e 67
24 TranSMItter OPEIALIONocvviiiei ittt e e e e e 69
25 Receiver FIOW-CoNtrol LOGICuuviiiiiiiiiiieiiiiee et 73
26 Transmitter FIOW-Control LOGICciiiiiiiiiieiiiiiie et 76
27 Local and Remote LOOPDhACK LOGICuvviiiuiriieeiiiiiiie ettt 82
28 INIGANZALION ...eeeeieiee e 85
29 Clocked BUs INterface RESEL..........ueeeiiiiiiiieiiieee e 130
30 Clocked Bus Interface CIOCKScooiiiiiiiiiiiiicc e 131
31 Clocked Bus Interface Read Cycle,
Motorola,-Style HandShakeeeveiiieeiiiiiiccieecce e 131
32 Clocked Bus Interface Service Acknowledgment Cycle,
Motorola,-Style HandShaKeeeveiiiiiiiiiiiiiiecee e 132
33 Clocked Bus Interface Write Cycle,
Motorola,-Style HandShakeeeveiiiieiiiiiiiceeec e 133
34 Clocked Bus Interface Read Cycle,
Intel,-Style HaNAShaKeoocuiiiiiii e 134
35 Clocked Bus Interface Service Acknowledgment Cycle,
Intel,-Style HaNAShaKeoouiiiiiii e 135
36 Clocked Bus Interface Write Cycle, Intel,-Style Handshake................ccccoeene. 136
6 Datasheet

intel.

Tables

Datasheet

37
38

39

40
41

42

PP OO~NOOE,WNE

= O

Intelligent Eight-Channel Communications Controller — CD1865

Unclocked Bus Interface Read Cycle, Motorola,-Style Handshake................... 139
Unclocked Bus Interface Service Acknowledgment Cycle,

Motorola,-Style HandShaKeooooiiiiiiiee e 140
Unclocked Bus Interface Write Cycle,

Motorola,-Style HaNAShaKeccooiiiiiiiiiiiiiccece e 141
Unclocked Bus Interface Read Cycle, Intel,-Style Handshake.......................... 142
Unclocked Bus Interface Service Acknowledgment Cycle,

Intel,-Style HANASNAKEccocoiiiii e 143

Unclocked Bus Interface Write Cycle,
Intel,-Style Handshake144

CD18XX Product Familyceueeiiiiieiiiiie et 15
Differences Between the CD1865 and CD1864...........cccouviiiiiiiieieeeiieeiiiiieee e 15
State MacChing LOGICcciii ittt e 29
Service Request Methodscoi e 36
Bit Rate Constants, CLK = 33 MHZ ...t 49
Bit Rate Constants, CLK = 25 MHZcuuiiiiii e 49
Bit Rate Constants, CLK = 20 MHZc.uiiiiiiiie e 50
Bit Rate Constants, CLK = 15 MHZccuuiiiiiiiiie e 50
REGISIE SUMMIAIY ...ttt e e e e 96
(04 [oTe3 (Yo I T 0 011 0 To 1S PRSP 129
UNCIOCKE TIMINGS .ottt ee e e e e e e e e anabe s e eeee s 137

7

CD1865 — Intelligent Eight-Channel Communications Controller

Revision History

intel.

Revision

Date

Description

1.0

May 2001

Initial release.

Datasheet

In o Intelligent Eight-Channel Communications Controller — CD1865

Figure 1. Functional Block Diagram

SERIAL o
INTERFACE
<> MODEM
5
RESET*——> SERIAL > IxD
CS*—> INTERFACE [RxD
DS*— » <> MODEM
CLK*—» -5 . TxD
RIW* — > SERIAL |, RxD
A[0:6] — RAM INTERFACE | <\ » MODEM
INTEL/MOT*——» 5
—— TXD
RREQ < INTERIACE [RxD
TREQ* <——) <> MODEM
MREQ* <«——| HOST] 5 XD
DTACKDLY—» BUS SERIAL [~ =%D
DTACK* < lNI%%ﬁéCE Y INTERFACE [MODEM
DB[0:7] RISC FIRMWARE S > TxD
* —» | X
ACKIN'—> PROCESSOR ROM SERIAL o RxD
ACKOUT* «—— INTERFACE | .\ . MODEM
CLK——> 5
0SC1—» SERIAL [XD
< X
DB?SLle—> INTERFACE T MODEM
CKOUT <—— O,
SERIAL E’;g
INTERFACE [
<> MODEM
5

Datasheet 9

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

1.0

Overview

1.1

10

The CD1865 is a cost-effective controller capable of controlling eight full-duplex channels
transferring data at rates up to 115.2 kbps. The advantage of the CD1865 liesin its ability to
efficiently move data from the serial channelsto the host. This results in an order-of-magnitude
improvement in system-level throughput and a reduction in overhead on the host CPU.

Toincrease the overall data throughput of the system, the device relies on a combination of features.
Most important are the buffers for transmit and receive data. Each serial channel has three 8-byte
FIFOs — one each for transmit, receive, and receive exception status. The receive FIFOs have
programmabl e thresholds to minimize interrupt latency requirements.

The CD1865 is based on a high-performance proprietary RISC processor architecture devel oped
by Intel specifically for data communication applications. This processor executes all instructions
in one clock cycle, and uses a register-window architecture to ensure zero-overhead context switch
for each type of internal interrupt.

The CD1865 is fabricated in an advanced CMOS process. The device's high throughput, low-
power consumption, and high-level of integration permit system designs with minimum parts
count, maximum performance, and maximum reliability.

Theory of Operation

The CD1865 custom RISC processor is assisted by specialized peripheral logic. Serial data
transmission and reception is handled by *bit engines' . Each channel has a bit engine for transmit
and another for receive. While each engine handles all bit-level timing, bit-to-character assembly is
donein firmware. Bits are passed to the processor by internal interrupts, over a specia bus
dedicated to this purpose. To reduce internal interrupts to zero, special interrupt context hardware
points to the correct register window for every possible context. A unique Global Index register
eliminates address cal culations by always pointing to the current channel.

The processor assembles bits into characters, checks parity and other formatting parameters, and
stores the data in the FIFOs as required. FIFOs are maintained as RAM-based structures. Both the
local processor and the host access them by Pointer registers, in effect an Indexed Addressing
mode.

The CD1865 communicates with the host by service requests and service acknowledgments.
Service requests can be detected by interrupt lines or by on-device registers. Regardless of the
method used, the CD1865 has features to minimize both the number of requeststo be serviced and
the time required to service them. FIFOs help reduce the number of service requests to one every
eight characters. To reduce the time required per request, the CD1865 supplies separate vectors for
four different types of servicerequests. Thisreducesthetime required by the processor to effect the
proper operation. For instance, there is a unique vector for ‘good data’, so that the host wastes no
time checking status bits or error conditions. If there is an error condition, the CD1865 supplies a
unique vector pointing to the error-handling routine. Other vectors report transmit status and
modem signal change.

Interrupts can be acknowledged either by an Interrupt Acknowledge pin, or by reading an on-

deviceregister. This alows host software maximum flexibility and speed in handling service
requests.

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

CPU

ADDRESS
DECODE
AND
CONTROL
LOGIC

INTERRUPT
CONTROLLER

ADDRESS ™D » -
DATA RXD || wTerrUPT |
DTR* CONTROLLER|
DSR < Channel 0
»| cs+ RTS*
> = = =
DS* CTS* j— ;gu%r;; %?ﬁr;; %%r;;
- m m m
o b CPU 0QQ 8QQ 820
»| oTAack+
ACKIN® <«—> CHANNEL 1
CD1865 |<«—> CHANNEL 2 ckine AckouT—Aackine ackouTg—Ackine AckouT—
|<«—> CHANNEL 3
RREG* |<«—> cHANNEL 4
< TREQ* <€—> CHANNEL 5 CD1865 CD1865 CD1865
ol | <«—> CHANNEL 6
] MREQ |<«—> CHANNEL 7

Typical CD1865 Host CPU Interface

CD1865 in Daisy-Chain Scheme

Datasheet

Because the CD1865 RISC processor is processing every character sent or received, features such
as automatic flow control and special character recognition are easily implemented. This further
reduces the processing burden on the host system. Both In-Band (Xon, Xoff) and Out-of-Band
(RTS/CTS, DTR) Flow-Control modes are supported. For in-band flow control, the CD1865
automatically starts and stops its transmitter when the remote unit sends flow-control characters.
The CD1865 also makesit easy for the local host to flow-control the remote, by the ‘ send special
character’ commands. For out-of-band flow control, the transmitter optionally asserts RTS and
monitor CTS for permission to send; and assert/negate DTR when the Receive FIFO reaches a
user- definable threshold. Together, the in-band and out-of-band features not only allow the data
flow to be controlled in real time with minimum or no host intervention, it also prevents loss of
data

As shown on the previous page, the CD1865 can interface virtually any CPU, with a minimum of
gluelogic. Refer to the CD1865 Data Sheet for detailed information on how to interface various
microprocessors. Systems with multiple CD1865s are easily implemented, with no external glue,
by device a daisy-chain scheme. A ‘fair share’ feature ensures equal access for all service requests,
both within one CD1865 and across multiple devices.

FIFO — 24 bytes of FIFO are dedicated to each channel partitioned as 8 bytes for transmitter,

8 bytesfor receiver, and 8 bytesfor status. The receive FIFO has a user-programmabl e threshold to
optimize system response and latency. The receive FIFO threshold programming rangeisfrom 1-8
characters.

Vectored Interrupt Structure— Threeinterrupt signals ([R, T, M]REQ*) are used. These signals
may also be read as an on-device register. Each REQ* signal represents one of three interrupt
groups: receive, transmit, and modem signal state changes. Upon servicing by the host, an interrupt
vector is generated by the CD1865 to define the interrupt group to be serviced and which CD1865
generated the interrupt. This allows the host software to enter directly into the proper interrupt
service routine, reducing the amount of interaction between the host and the controller, and
determining the nature of the interrupt.

Good Data Interrupt — If datareceived isall good, the host is advised of the number of good
data bytesin the FIFO, allowing the host to read data without further status queries until all good
data has been transferred.

Fair-Share Interrupt Scheme— To ensure equal service of all channels, afair share schemeis

used for each interrupt group. No channel can interrupt for the same condition until all others have
a chance to be serviced for the same interrupt condition.

11

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Note: To support 115.2 kbps, a system clock of 66 MHz isrequired. System design is simplified in the
CD1865 by providing a choice of crystal or external clock operation, at 1x- or 2x-rated frequency.

12 Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

2.0 Conventions
2.1 Abbreviations
Symbol Units of measure
°C degree Celsius
UF microfarad
us microsecond (1,000 nanoseconds)
Hz hertz (cycle per second)
Kbit kilobit (1,024 bits)
kbps

kbits/second

kilobit (1,000 bits) per second

Kbyte kilobyte (1,024 bytes)
kbytes/second kilobyte (1,000 bytes) per second
kHz kilohertz
kQ kilohm
Mbyte megabyte (1,048,576 bytes)
MHz megahertz (1,000 kilohertz)
mA milliampere
ms millisecond (1,000 microseconds)
ns nanosecond
pVv picovolt
Y volt
watt

The use of ‘thd’ indicates values that are ‘to be determined’, ‘n/a’ designates ‘ not available’, and
‘n/c’ indicates apin that isa‘no connect’.

2.2 Acronyms

Acronym

Definition

AC

alternating current

CMOS

complementary metal-oxide semiconductor

DC

direct current

DMA

direct-memory access

DRAM

dynamic random-access memory

FIFO

first in/first out

Datasheet

13

CD1865 — Intelligent Eight-Channel Communications Controller

14

Acronym Definition (Continued)
HDLC high-level data link control
ISA industry standard architecture
LSB least-significant bit
MSB most-significant bit
PPP point-to-point protocol
MQFP metric quad flat pack
RAM random-access memory
R/W read/write
SDLC synchronous data link control
TTL transistor-transistor logic

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

3.0 Device Selection Considerations
The CD1865 device is an enhanced version of the same product family asthe CD180 and CD1864.
The CD1865 is software compatible with both the CD180 and CD1864. If thisis a new CD1865
design, please skip this page.
The CD1865 is recommended for any new designs. Please note that to achieve the high datarates,
66-MHz system clock isrequired. To support data rates of up to 115.2 kbps, the specified system
clock frequency is required. Please refer to the differences in pins between the CD1864 and
CD1865. It is recommended that the 66-MHz, 2x-clock option (oscillator or crystal) isused
wherever possible.
Table 1. CD18XX Product Family
Features CD180 CD1864 CD1865
Package 84-pin PLCC 100-pin PQFP 100-pin MQFP
25 MHz (x2) or 66 MHz (x2) or
System clock 12.5 MHz 12.5 MH(z (>)<1) 33 MHz((x)l)
Maximum bit rates 64 kbps 64 kbps 115.2 kbps
DTRSEL * - -

Pins 4 modem/10 signals per | 5 modem/IO signals per | 5 modem/IO signals per

channel channel channel

Note: Thisinput (DTRSEL) on the CD180 sets the mode for the DTR*/CD* pins. When DTRSEL is
high, the DTR*/CD* pinsimplement the DTR* output; when low, the DTR*/CD* pins become
CD* inputs.

The CD1864 and CD1865 have separate DTR and CD pins and so the DTRSEL is eliminated.
Table 2. Differences Between the CD1865 and CD1864
_ CD1865 CD1864
Pin Number Pin Name Pin Name Comments
1 Vee n/c Note 1
16 GND n/c Note 1
37 VCC n/c Note 2

NOTES:

1. Pin 1 and pin 16 are truly no-connects on the CD1864 device.

2. Pin 37 on the CD1864 is not a true no-connect, and can cause problems if connected to Vc¢. To make a
single board design be compatible with either the CD1864 or CD1865, a configuration jumper must be used
to allow pin 37 to be a no-connect or a V¢ connection.

Note: In January 1995, Intel changed all 100-pin PQFP package types from EIAJto JEDEC. The
CD1865 is now availablein a JEDEC package. Before beginning any new design or converting
from CD1864 to CD1865, please contact Intel for package details.

Warning: The CD1865 device may have potential latch up problemsif used in socket. It is recommended that
this device be surface mounted.
Datasheet 15

CD1865 — Intelligent Eight-Channel Communications Controller

4.0

Pin Information

The CD1865 isavailablein a 100-pin MQFP (metric quad flat pack device) configuration as shown

bel ow.
4.1 Pin Diagram
GEQEW:SEEDEEEEEEDQXQ
IIIIIII??%?Tiiiig?TT
vee TEST

DS*RD*) — g
RIW*(WR*) — g
DTACK* ~———
CS* — 3
RTS[0]* <-——
CTS[0]* —
CD[O]* ——»
DTR[O]* <——
DSR[0]* ——
RTS[1]* ~——
CTS[) —
CD[1] ——
DTR[]* <——
vce
GND
DSR[1]* —— 3
RTS[2]* <€«——
CTS[2)r —
CD[2]* —»
DTR[2]* <€——
DSR[2]* ——
RTS[3]* <——
CTS[3)r ——»
CD[3 ——
DTR[3]* <€——
DSR[3]* ——
RTS[4]* ~<——
CTS[4]r —»
CD[4* ——»

© 00N OB W NP

GND
VvCC

CD1865

100-Pin MQFP

- -

RTS[5]* <€——

DTRM4]* ~<€——
DSR[4]* ——»

INTEL/MOT* ——»

DTACKDLY —»
NC

ACKOUT* -——

CTS|

CD|
DTR
DSR
RTS|
CTS|

*

RTS

~€«——— ACKIN*
~«—— DBLCLK
-«—— 0sC2
-—— 0SC1
~€«—— NO_OSC
—>» RREQ*
—>» TREQ*
—>» MREQ*
—» TXD[7]
—> TXD[6]
—> TXD[5]
— TXD[4]
—> TXD[3]
—> TXD[2]
—» TXD[1]
vce
——> TXD[0]
~<— RXD[7]
~— RXDI[6]
~— RXD[5]
~<—— RXD[4]
~— RXD[3]
~— RXD[2]
~«— RXD[1]
~— RXD[0]
~«— DSR[7]*
—» DTR[7]*
~«— cp[7
~«— CT9[7]*

16

NOTE: (*) Denotes an active-low (negative-true) signal.

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Pin Assignments

The following conventions are used in the table below: (*) denotes an active-low signal; | = input;
1/0 = input/output; O = output; OD = open drain; a(:) indicates decending pin numbers; a (-)
indicates ascending pin numbers.

17

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

5.0

Functional Description

5.1

18

Introduction

The CD1865 1/0 coprocessor controls eight full-duplex channels that transfer data at rates up to
115.2 kbps. The CD1865 efficiently moves data between the serial channels and the host, resulting
in agreat improvement in system-level throughput and a reduction in overhead on the host CPU.
Thisimprovement is obtained by reducing the number of service requests (interrupts) the host must
respond to and reducing the complexity and time required to handle each service request.

The CD1865 relies on a combination of features to reduce the number and complexity of service
requests. Most important are the buffersfor transmit and receive data. Each serial channel hasthree
8-byte FIFOs — one each for transmit, receive, and receive-exception status. The Receive FIFOs
have programmable thresholds to minimize interrupt latency requirements. The vectored service
reguests and the Good Datall interrupt alow the host system to immediately transfer data upon
beginning processing of a service request, without tedious checking of flags and error conditions.

The CD1865 is based on a high-performance, proprietary RISC processor architecture devel oped
by Intel specifically for data communications applications. The CD1865 processor executes all
instructions in one-clock cycle, and it uses a register window architecture to ensure zero-overhead
context switch for each type of internal interrupt. The instruction set of this processor is optimized
for bit-oriented tasks that combined with instantaneous response to sending or receiving one hit,
allow highly efficient processing of characters. All firmware for the CD1865 processor is
contained in an on-device ROM, and requires no user programming.

The CD1865 processor is assisted in itstask by specialized peripheral logic. Serial data
transmission and reception is handled by *‘bit engines' . Each channel has a bit engine for
transmitting and another for receiving. While each engine handles al bit-level timing, bit-to-
character assembly isdone in firmware. Bits are passed to the CD1865 processor by internal
interrupts over a special bus dedicated to this purpose. Special internal-interrupt context hardware
reduces overhead on internal interruptsto zero by pointing to the correct register window for every
possible context, and a unique Global Index register eliminates address cal culations by always
pointing to the current channel. External service requests to the host system are also hardware
assisted. There is aqueue for each of the three classes of external service requests, and the request/
acknowledgment mechanism is entirely in hardware to minimize response time.

The CD1865 processor assembles bits into characters, checks parity and formatting parameters,
and stores the data in the FIFOs as required. FIFOs are maintained as RAM-based structures, and
both the local CD1865 processor and the host access them by Pointer registers by an Indexed
Addressing mode.

The CD1865 communicates with the host by service requests and service acknowledgments.
Service requests can be handled either as interrupts or by polling. Regardless of the method used,
the CD1865 has features to minimize both the number of requests to be serviced and the time
required to service them. The number of service requestsis reduced by the FIFOs since a service
request is required only every eight characters. To reduce the time required per request, the
CD1865 supplies separate vectors for four different types of service requests. Thisreducesthetime
required by the host CPU to determine what action to take. For example, thereis a unique vector
for Good Data so that the host wastes no time checking status bitsfor error conditions. If thereisan
error condition, the CD1865 supplies a unique vector pointing to the error-handling routine. Other
vectors report transmit status and modem signal change.

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Service requests to the host system are implemented on the CD1865 by three hardware service
reguest state machines. Each machine has the ability to ‘ queue-up’ multiple requests. The state
machines are designed to offer the fastest response possible. Whenever the CD1865 processor
determines that a condition needs a service request, it queues the request with the appropriate state
machine. The state machine posts the external request, monitors acknowledgment cycles from the
host, and informs the CD1865 processor when a valid service acknowledgment has been
completely serviced. This allows the CD1865 to correctly maintain the internal context for
processing the channel being serviced.

Because the CD1865 processor processes every character sent or received, features such as
Automatic Flow Control and Special Character Recognition are easily implemented. This reduces
the processing burden on the host system. Both In-Band (Xon, Xoff) and Out-of-Band (RTS/CTS,
DTR/DSR) Flow Control modes are supported. For In-Band Flow Control, the CD1865
automatically starts and stops its transmitter when the remote unit sends flow-control characters.
The CD1865 makesit easy for the local host to flow-control the remote by the * Send Special
Character’ commands. For Out-of-Band Flow Control, the transmitter optionally asserts RTS and
monitors CTS for permission to send, and assert/negate DTR when the Receive FIFO reaches a
user-definable threshold. DSR can be used to gate the receiver on and off. Together, the In-Band
and Out-of-Band features allow the data flow to be controlled in realtime with minimum or no host
intervention, and this also prevents loss of data.

Systems with multiple CD1865s are easily implemented, with no external glue, by adaisy-chain
scheme. A fair-share feature ensures equal access for all service requests, both within one CD1865
and across multiple devices. Alternately, multiple CD1865s can be operated in parallel as
independent devices.

Seria channels on the CD1865 are entirely independent of one another. Any channel can be
programmed to a combination of features regardless of the state of other channels. Bit-rate
generators are programmed by loading adivisor value, so the transmitters and receivers can each
operate at any standard or non-standard data rate.

The CD1865 can detect the received line-break condition, send break characters of any length, and
transmit delays. Thisis done by transmit commands embedded in the Transmit Data Stream. The
CD1865 can also be programmed to detect user-defined special characters and generate a special
service request to the host. Parity checking is performed automatically, but can be overridden by
the host to force parity errors for test purposes. Character length and Stop bit length are also
programmable per-channel.

Modem pins on the CD1865 are general-purpose, that is, they are not hard-wired into the UART
functions. If modem pins are not needed to interface to actual modems, they can be used as
genera-purpose 1/0 pins. In either case they are readable and writable directly by the host system.
In addition, the CD1865 can be programmed to monitor levels on modem input pins and generate
service requests to the host upon detecting a specified change.

The CD1865 is fabricated in an advanced CM OS process. Its high throughput, low-power
consumption, and high level of integration permits system designs with minimum parts count,
maximum performance, and greater reliability.

Thereisasignificant difference between the CD1865 and conventional dumb UARTS; the CD1865
is more efficient and intelligent, even when operating in a polled environment. Systems built with
the CD 1865 interface between the host and the 1/0O device at a higher level than systems built with
conventional UARTSs. For example, with a dumb UART, the host must test each channel for
presence of data, a process that is time-consuming. With the CD1865, the host queries the entire

19

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

5.2

20

serial 1/0 subsystem for the presence of data. If datais present, the CD1865 determines which
channel it is on, and whether it is good or erroneous. Thus, using the CD1865, the host-peripheral
interface is easier to implement, faster, and more efficient.

Internal Operation

Theinterna architecture of the CD1865 is shown in Figure 2. The foundation of the designisa
custom-designed CPU that Intel has developed especialy for this application. This CPU is
optimized for bit-oriented tasks associated with UART functions, and it has a set of registers for
each channel, arranged in aregister window architecture. These registers and the ALU are eight
bits wide. The CD1865 processor has a 16-bit instruction word that it retrieves from an on-device
ROM. Every instruction is one-word long and executed in one-clock cycle.

Whenever an internal interrupt occurs (from a bit engine), the CD1865 processor automatically
switches context to that channel’s block of registers. No timeislost in saving any machine state.
The CD1865 processor executes the instructions necessary to handle that bit (typically three to six
instructions) and then returns to the context it was in prior to the internal interrupt. All internal
interrupts are at the same priority level; the interrupt handler block ensures fair-share access across
channels.

Each channel’s serial interface logic consists of areceive-bit engine, atransmit-bit engine, a
receive-baud-rate generator, a transmit-baud-rate generator, and atimer. The receive-bit engine
sampl es the state of the RxD pin at the time indicated by the receive-baud-rate generator, and it
reports this value to the CD1865 processor as an interrupt. The transmit-bit engine worksin a
similar manner. At the baud rate tick, it outputs the next bit and generates an interrupt to the
CD1865 processor requesting the following bit.

The baud-rate generators are 16-hit dividers that operate from a master clock, which isthe system
clock divided by 16. All baud-rate generators are independent, so achannel can send and receive at
any speed. In addition to the baud-rate generators, there are two channel timers for each channel.
Oneisan 8-bit divider, operating off the master prescaler timer tick. Thistimer is used to time-out
partialy full FIFOsto avoid ‘stale’ data. The other is used to time embedded delaysin the transmit
data stream.

All eight channels are continuously scanned by internal logic that generates interrupts to the
CD1865 processor ina‘fair’ manner. Thisfair-shareinterrupt feature is the same as the mechanism
used to share service requests across multiple devices. Whenever two or more channels are
contending for interrupt service, the channel that is serviced first does not assert again until all
other currently pending channels are serviced. This prevents a fast, 64-kbps channel from
demanding service from a slow 1200-bps channel, yet it allows the faster channel the additional
service it needs to support its higher speed. This alows more overall throughput than a‘ round-
robin’ or an ‘equal-access method would provide.

Service requests for the host are handled by fast, dedicated logic on each of the three levels
provided. Whenever the CD 1865 processor detects a condition requiring external-host service, it
gueues the reguest with the service-request machine for that level. This machine asserts the
External Request pin, and it monitors for a service acknowledgment of the same level. When a
service acknowledgment is sensed, the machine automatically provides the vector to the host and
setsup theinternal context of the CD1865 for service. Upon completion of the service, the machine
restores the normal context. The queue for service requests is two deep, so in abusy system there
can be another request immediately pending when the first one is completed. This method avoids
any delay between requests, and improves overall efficiency.

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Modem I/O signals are implemented as ‘ conventional’ input-output circuits, readable, and writable
by either the on-device or the host CPU. This allows maximum flexibility in using these signals
either in the conventional way, or for any other I/O function required. When the CD 1865 processor
is using these pins to implement flow-control functions, it reads them under software control and
implements the function that way. Thereis no direct hardware association between the modem pins

and the seria 1/O hardware.

21

CD1865 — Intelligent Eight-Channel Communications Controller

Figure 2. Internal Block Diagram

RECEIVE BIT
Ve E l«— RXDATA
TRANSMIT BIT
A L > TXDATA
JDUAL-BAUD RATE
GENERATORS
RECEIVE BIT
CEIVE E l«— RXDATA
RREQ* <« RECEIVE TRANSMIT BIT _ » TXDATA
TREQ*<—] ENGINE
|| SERVICE | _
MREQ*<— REQUEST H DUAL-BAUD RATE
QUEUE GENERATORS
ACKOUT*<—]
RECEIVE BIT
ACKIN* —»] l«— RXDATA
SERVICE | [TRANSMIT ENGINE
REQUEST| | SERVICE ROM TRANSMITBIT | _» TXDATA
LOGIC [|REQUEST ENGINE
QUEUE HDUAL-BAUD RATE
GENERATORS
Sl\/é%I\D/IIE(':\AE R = RECEIVE BIT
Hrequest [—{ <PV K ENGINE l«— RXDATA
QUEUE TRANSMIT BIT
1 ENGINE > TXDATA
INTERRUPT DUAL-BAUD RATE
ADR[0—6 M GENERATORS
DATA[1-7}=>
CS*— RECEIVE BIT
DS* —] i Ve «— RXDATA
R/W —»}
DTACK*—»] RAM TRANSMIT BIT
BUS — ENGINE L » TXDATA
INTERFACE
INTEL/MOT%:—» H DUAL-BAUD RATE
RESET*—» GENERATORS
CLK—>]
DBLCLK —>] PER RECEIVE BIT
NO_OSC—> <—»] CHANNEL ENGINE <— RXDATA
0OSC1—» TIMER
0SC2 —» TRAE%%%TEB” > TXDATA
o || DUAL-BAUD RATE
—RT GENERATORS
jl«——— CTS*
L » DTR*
l«—— DSR*
I/OPINS Je—— CD* RECEIVEBIT |« RXDATA
(MODEM le~—» 5LINES ENGINE
CONTROL) l¢ s » 5LINES TRANSMITBIT | TXDATA
<> 5 LINES ENGINE
<> SLINES DUAL-BAUD RATE
<> S LINES GENERATORS
<« 5> 5 LINES
l«——> 5 LINES
RECEIVE BIT
CRIVE B <« RXDATA
TRANSMIT BIT
Pt T L > TXDATA
|| DUAL-BAUD RATE
GENERATORS
22 Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

The CD1865 workload can be divided into two categories:
* Bit-to-character conversion (and vice versa) — the ‘traditional’ UART function

* Character-level processing such as flow control, FIFO management, and host interface
functions

The CD1865 internal processor handles all these tasks in firmware. A foreground/background
scheme is used: foreground for internal bit-engine interrupts and background for everything else.
Thisinternal structure represented in Figure 3 on page 24, shows how the foreground
communicates with the background. Foreground code handl es bit-to-character assembly for
receive, and character-to-bit disassembly for transmit. In either case a Holding register, together
with a Full/Empty bit, acts asthe ‘ gateway’ between the interrupt-driven foreground and the
polling-loop background code.

The background code executes the polling loop as shown in Figure 4. After power-on reset, the
software runs continuously in an inner and an outer loop. Lower-priority tasks are handled in the
outer loop, and higher-priority tasks are handled in the inner loop. The highest-priority tasks are bit
events that are handled by foreground (that is, interrupt-driven) code.

Theinner loop executes eight times as often as the outer loop. It checks each channel’s Full/Empty
bitsto sense if another character needs to be moved. It first checks receive, and if thereisa
character to be moved, it is moved and execution moves on to the next channel. If receive data does
not need processing, then transmit is checked. This mechanism gives a dightly higher priority to
receive than to transmit, and is favorable because missing a receive character is afatal error and
being late in transmitting one is not an error. (The effect of this can be observed by programming
the CD1865 for higher-than-rated serial baud rates and providing a source of receive traffic with
virtually 100-percent loading. Asthe CD1865 is heavily loaded, it leaves short gaps between
transmit characters because the firmware is following the ‘receive’ path through the code. Refer to
Section 6.2.5 for details on maximum performance and maximum line speed).

After eight passes through the inner loop (for example, checking al eight channels for data), one
pass is made through the outer loop. This pass checks one channel for host commands (such as
“Send Special Character’), timer functions, and a condition that requires posting an external service
request (for example, Receive FIFO full, Transmit FIFO empty, modem signal change, and so on).
If required, the firmware posts the service request within the queue of the appropriate service-
request logic. It then continues normal operation, until the host responds to the service request.
After asingle pass through the outer loop, eight passes through the inner loop are again made.

In most cases the CD1865 checks the appropriate bit in RAM to determine which options are
enabled and then modifies its processing accordingly. Some control bits must be interpreted and
moved by the CD1865 firmware from their location in Option Bit registers to other locationsin the
device. Therefore, the host must notify the CD1865 when these bits are modified. Then, the
CD18665 alters the channel as commanded. For details on channel command functions, refer to
Section 7.2.

23

CD1865 — Intelligent Eight-Channel Communications Controller In

Figure 3. Foreground/Background Internal Structure

RECEIVE DATA COUNT REGISTER
A

RECEIVER RECEIVE
FIFO STATUS
FIFO

] A
/BACKGROUND CODE: \
H.R.-TO-FIFO TRANSFER, FLOW
CONTROL, OTHER FEATURES

(POLLING LOOP) /
FULL/

EMPTY
RECEIVER HOLDING REGISTER BIT
y Y FOREGROUND CODE:
BIT ASSEMBLY,

S.R.-TO-H.R. TRANSFER

(INTERRUPT-DRIVEN)
RECEIVER SHIFT REGISTER DTR DSR

RECEIVER ouT IN

TRANSMITTER
FIFO

BACKGROUND CODE: \

FIFO-TO-H.R. TRANSFER, FLOW
CONTROL, OTHER FEATURES

(POLLING LOOP) /
y
FULL /

TRANSMITTER HOLDING REGISTER EMPTY

BIT
FOREGROUND CODE:
BIT DISASSEMBLY,
- > H.R.-TO-S.R. TRANSFER
TRANMSITTER SHIFT REGISTER (INTERRUPT-DRIVEN) g'{ﬁ_ CITNS

TRANSMITTER

24 Datasheet

INlal.

Intelligent Eight-Channel Communications Controller — CD1865

Figure 4. Internal Operation Flow Chart

POWER-ON

RESET

INITIALIZATION

FOR OUTER_LOOP
1=1TO 8

HOST COMMAND

PROCESSING

TIMER FUNCTIONS

FOR INNER_LOOP
J=1T08

GLOBAL

| (SOFTWARE)

RESET

IF
RCV_HLD_REG
= FULL

PROCESS RECEIVE CHAR,;
CHECK ALL SPECIAL FEATURES;
PLACE IN FIFO

IF
XMT_HLD_REG

= EMPTY

PROCESS TRANSMIT CHAR;
CHECK ALL SPECIAL FEATURES;
FETCH FROM FIFO

PROCESS RECEIVE
INTERRUPT

RECEIVE SERVICE
REQUEST SCANNING

TRANSMIT SERVICE
REQUEST SCANNING

!

MODEM SERVICE
REQUEST SCANNING

s

Datasheet

25

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

5.3

5.3.1

26

Service Request and Interrupt Operation

The CD1865 enhances design efficiency, because it is an intelligent device that more closely
resembles an add-in controller board than a mere collection of TTL. Conventional UARTs are
basically passive, ‘dumb’ logic. For example, when polling a device for channels requiring service,
each channel is not individually tested. Because of this, certain restrictions are placed on when and
how FIFOs are accessed. The CD1865 processor must determine what the host is doing, and when
to manage the queue of events correctly and efficiently.

Interrupt-Driven Versus Polled

Choosing the software interface, interrupt-driven versus polled, is critical to overall system
performance. This choice a so affects how the software is written. In hardware implementation, a
programmer has a choice of Mixed mode, that is, when to poll versus when to be interrupt-driven.
Mixed-mode operation allows a programmer to optimize the efficiency of the system according to
changing needs. The advantages of each method are discussed in Section 5.5.

Theory of Operation

The CD1865 has three independent service request levels, one for each of the three categories —
Receive, Transmit, and Modem signal change. The priority of these linesis not fixed, but can be
determined in one of the following three ways:

* |t can be set within the CD1865 by the AutoPriority Option bits.

* A system designer can assign priorities by the manner in which the three service request lines
are connected to the host interrupt controller.

¢ Under software control, the host system can define and redefine the order of service requests.

The Service Reguest interface to the host isimplemented with five signals— *, *, *, ACKIN*, and
ACKOUT*. * * and* are asserted when a service request is pending; ACKIN* is asserted during
service-acknowledgment cycles; and ACKOUT* isused in multiple CD1865 designs to share
service requests and daisy-chain acknowledgments.

Whenever the CD1865 processor determinesthat one or more channels need service from the host,
it loads the appropriate service-request state machine with the information about the type of
request. The service-request state machine for that level then assertsits request signal. Note that all
three request signals can be active at the same time. At this point, the CD1865 has not determined
which reguest should be handled first — it ssimply assertsany and all lines, as required by the status
of various channels. (Thisistrue even if the AutoPri Option is enabled; AutoPri takes effect when
aservice request is acknowledged, and at that time the CD1865 determines which is the most
important request.)

The host, after noticing that one or more of the three service request pins are active — either
because the host isinterrupted or it polled an external or internal CD1865 status register — decides
which of the requests (if more than one is active) it servicesfirst. The host begins the service
operation by issuing a Service Acknowledge cycle. The purpose of this cycleisto cause the
CD1865 to set up itsinternal state for that type of request. (Note that if AutoPri isset, it isnot
necessary for the host determine which level of service request to acknowledge; it simply
acknowledges the CD1865 request and the CD 1865 returns the vector for the highest-priority
active request.)

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

If AutoPri is not being used, the CD1865 needs to be informed which one of the three possible
pending requests the host wants to acknowledge. There are two different ways CD1865 can be
informed of this— hardware and software.

The hardware method is based on the value in the address bus. The CD1865 determines the type of
reguest being acknowledged by the value placed in the address bus during the acknowledge cycle.
Thisis the method used by Motorola”-family processors. The host places the level of interrupt
being serviced on the low-order address bits during an interrupt acknowledgment cycle. When the
host performs a Service Acknowledge cycle, the CD1865 compares the value on the address bus
with the three unique values stored in three internal registers — the . These values are set by the
user at system initialization. A match occurs on only one of these registers, and this informs the
CD1865 of the type of request being acknowledged.

In most circumstances the address bus should not have avalue that does not match one of the three
values during an acknowledgment cycle. This causes the CD1865 to not recognize that any bus
cycleisoccurring, and it does not assert DTACK*, or terminate the cycle, or take any other action.
Doing this does not affect the CD1865, but the system must have some other provision to terminate
the bus cycle. If, for example, the CD1865 shares an interrupt level with another device, different
values on the address bus should be used to control responses to an acknowledgment, but the bus
cycle should terminate in a usable way.

Service acknowledgments can also be performed by software. The host simply reads one of three
Request Acknowledge registers, and the CD1865 performs asif a hardware service acknowledge
cycle is executed.

Regardless of the method of acknowledgment used, within the CD1865, each service request state
machine makes the following determination: if it has an internal service request pending, and there
is a service acknowledge of the same type, it asserts its internal -acknowledge-accepted signal back
to the Service Request Controller logic, negates the Service Request Output pin, and holdsits
acknowledge-out daisy chain in anegated state. It also drives the value in the Global Vector
register (GVR) onto the data bus, for the host to read as part of the Service Acknowledge cycle.
The GVR value placed on the bus during the Service Acknowledge cycle serves two purposes. The
least-significant three bits of GV R indicate which of the four types of service requests are
occurring. The upper-five bits are user-defined and serve to identify, in daisy-chained CD1865
systems, which of the multiple CD1865s is active.

If the service request state machine does not have a service request pending, and there is a software
acknowledgment or address bus match, it passes the service acknowledgment down the chain by
asserting ACKOUT*. If there is no match, the state machine remainsidle.

If aservicerequest is pending and the Receive Service Request is to be handled, the CD1865 is
notified because the three have different values in them; therefore, only one match (receive
service, in this case) occurred. The internal grant from the service regquest state machine causes the
receive service type code and active channel number (previously stored at the time the request is
posted by the CD1865 processor) to be pushed onto the service request stack. This automatically
causes the FIFO pointersto be set up for the active channel, with no host intervention.

The host, at this point, has all the information needed to handle the service regquest. It determines
the exact type of service being requested (Transmit, Receive Good Data, Receive Exception, or
Modem signal change) and which of the multiple CD1865s is requesting service. It getsthe
channel number by reading the Global Channel register (GCR) and then proceeds to service the
request. At the completion of the service, the host performs a dummy write to the CD1865 End Of
register (), that causes the CD1865 to exit itsinternal service request state by popping the service

27

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

5.3.2

28

Note:

request stack. At thistime the CD1865 is ready to be serviced on another of its outstanding
requests. If another request of the same level is pending, two clock periods after the writeto are
required for the CD1865 to reassert the request line.

Because the CD1865 has a service request stack, it can support nested-service requests. For
example, the host can be in middle of a Transmit Service Reguest, detect that Receive Service
Request has asserted, process the Receive Service Request, and after exiting the receive service
routine, resume the Transmit Service Request. The CD1865 stack is three deep, so al three types
(one of each) can be nested if required. The current service request context (for example, the stack)
isreadable in the Service Request Status register.

The Global Channel registers (GCR) are actually three registers that provide the number of the
channel requesting service. Reading any of these registers causes the CD1865 to mask in three bits,
specifying the channel number of the currently active channel. Normally these registers are read by
the host when it is handling a service request. In this case, the three bits are the number of the
channel requesting service. If any of the three GCR registers are read when the CD1865 isnot in a
service-request context, the three bits are the current value in the CAR. The current channel
number is masked into the contents of bits 4:2 of this register by the CD1865 when it isread by the
host. The actual contents of the register are not modified.

These three registers are provided as a convenience to the user. In most applications, the user only
uses one of these locations, and set the register to some arbitrary value. However, it may be useful
to record information about the state of the CD1865 (or the software driving it) that is associated
with each of the three service-request types. In this case, the user can store whatever information is
required in the unused bits. Then, when entering a service routine, the software can check these bits
to find what state they were left in, and this could be used as a ‘ sub-vector’.

Internal Implementation of the Service Request Logic
As discussed above, the heart of each service request level is an asynchronous state machine. This
state machine has three inputs:

* MATCH from the Priority Interrupt Level register comparator,

¢ ACKIN* from the host system, and

* INTERNAL_REQUEST from the CD1865.

Software acknowledgments (reads from the Service Request Acknowledge registers), in effect,
force the MATCH value true for their respective level.

It also has three outputs:
* Svc_Reqgto the host system,
* INTERNAL_GRANT to the CD1865, and

* ACKOUT*, which is combined with the other two ACKOUT* signalsto provide ACKOUT*
to the next CD1865 in the daisy chain.

Figure 5 on page 30 shows logic implemented by the state machine, which is described in Table 3.

Datasheet

INlal.

Table 3. State Machine Logic

Intelligent Eight-Channel Communications Controller — CD1865

State Name

Output Condition

Comments

IDLE
IF (INTERNAL_REQUEST = 1)
ELSE IF (ACKIN* = 1 & MATCH =1)
ELSE

all outputs inactive
GoTo REQ_ACTIVE
GoTo PASS_ACK
Stay at IDLE

; hormal ‘resting’ state
; pass this acknowledge
; wait here

REQ_ACTIVE
IF (ACKIN* =1 & MATCH =1)
IF (ACKIN* = 1 & MATCH =0)

GoTo KEEP_ACK
Stay at REQ_ACTIVE

request asserted
; keep this acknowledge
; wait here, ACK is for some other level (1)

ELSE Stay at REQ_ACTIVE ; wait here

PASS_ACK ACKOUT* asserted

IF (ACKIN* = 0) GoTo IDLE ; return when ACKIN* is gone

ELSE Stay at PASS_ACK ; wait here while ACKIN* active

KEEP_ACK INTERNAL_GRANT asserted
GoTo IDLE .

IF (ACKIN* = 0) ; return when ACKIN* is gone
Stay at KEEP_ACK] .)

ELSE ; wait here while ACKIN* active

NOTE: The (1) denotes the point at which, if there is no match, the CD1865 determines not to pass the ACK
down the daisy chain. It does this for two reasons: first, it is unacceptable to have the ACKOUT* ‘glitch’
low; and second, the state machine should be as fast as possible. When the state machine senses an
ACKIN* and match is not valid, it cannot conclude that it should assert ACKOUT?; the ACKIN* may be

for one of the other two service requests levels. It could wait for the results of the other two MATCH

comparators; however, this complicates, and therefore slows down, the response of the state machine.

The reason this complication causes delay is (to implement the logical function ‘assert ACKOUT* if no

match’) it must determine how long to wait before declaring a no-match condition. To implement this
delay function, a synchronous state machine is required, which at a 15-MHz clock, means a delay of
several hundred nanoseconds from ACKIN* to ACKOUT?*, instead of the 65 ns currently specified.

Datasheet

29

CD1865 — Intelligent Eight-Channel Communications Controller

Figure 5. Internal Service Acknowledge Decision Tree

IDLE STATE (1)
ALL OUTPUTS INACTIVE

IF
INTERNAL_REQUEST
= ACTIVE

TRUE REQUEST_ACTIVE STATE (2)
ASSERT REQUEST

FALSE

IF
IACKIN* = ACTIVE
AND

KEEP_ACK STATE (4)

ASSERT INTERNAL_GRANT)

MATCH = YES

IF
IACKIN* = ACTIVE
AND
MATCH = NO

TRUE

(This block is redundant. It is placed
here to emphasize that if there is no
match, nothing happens.)

IF
IACKIN* = ACTIVE
AND
MATCH = YES

PASS_ACK STATE (3)
ASSERT IACKOUT*

FALSE

TRUE

IF

IACKIN* = INACTIVE

TRUE

30

Datasheet

intel.

5.3.3

Figure 6.

Intelligent Eight-Channel Communications Controller — CD1865

Priorities and Fair Share

The CD1865 implements a fair-share mechanism to ensure that all channels receive equal service,
without any ‘ data starvation’. Fair share works automati cally among the channelsin one device and
across multiple devices.

Figure 6 on page 31 shows afair-share operational block diagram. On each of the three service
request lines, the CD1865 monitors both the internal and external value of the line. (The external
value can differ because, in multiple CD1865 applications, it can be driven by other CD1865s.) At
the end of a service acknowledgment bus cycle, the CD1865 checks the state of both request
values. If they are different, the CD1865 determines that there is another part also driving the
request line, and it does not reassert its own request line until the external request has gone
inactive. Thisinactive level means every other CD1865 with a pending request is serviced;
therefore, it is now okay to reassert requests without controlling host bandwidth.

Internal Fair-Share Operation

TO CD1865
INTERNAL REQUEST —=—

INTERNAL REQUEST I\ EXTERNAL REQUEST (I/O PIN)

LOGIC
OK TO ASSERT

LATCH

5.4

Datasheet

Types of Service Requests

The categories of service requests that a CD1865 can generate are explained below. Each channel’s
transmitter, receiver, and modem pins require service from the host occasionally; however, each
category of service request conditions can tolerate different latenciesin being serviced. Conditions
for service requests fall into three basic categories:

¢ Dataisreceived from the remote device and needs to be transferred to the host.

31

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

54.1

5411

32

¢ Datafrom the host can be given to the Transmitter FIFO, which is now empty.

* A modem signal changes state.

Three separate service request levels are provided to support the following three categories:

Souree Pin Name | 0 er Name
Receive data *
Transmit data *
Modem signal change *

Receive Service Requests

The Receive Service Request is unique because it has two subtypes; that is, it is capable of
returning one of the two different vectors during a service request acknowledge cycle. The two
sub-types are — ‘Receive Good Data’ and ‘ Receive Exception’. The reason there are two types
within one category of service request is that, while Good Data and Exceptions require different
handling, they are both of equal priority, and need to be serviced in the order they are received. For
example, suppose two good characters are received, then an exception character, and then another
good character is received. There must be a service request for the first 2 bytes of Good Data, then
for the Exception, and then for more Good Data. If Exception Service Request is at a different
level, the exception character is processed either before or after the Good Data, and not in sequence
asit should be. This method also alows the Receive Good Data-handling routine in the host to be
very fast and efficient, sinceit only hasto move ‘N’ bytesto a buffer. All special-case conditions
can be put in a separate handler, where they do not slow down normal data transfers.

Exception characters are characters with errors or that match the defined specia characters, line
breaks, and certain time-out conditions.

Datamust not be read from the Receive FIFO or the Receive Status FIFO except when the CD1865
iswithin the context of a Receive Data Service Request.

Receive Good Datall

A Receive Good Data Service Request is asserted for any of the following three conditions:
1. RxFIFO threshold reached, and the FIFO contains Good Data.

2. RxFIFO threshold not reached, but the FIFO contains Good Data, and the Receive Data Timer
times-out.

3. RxFIFO threshold not reached, but the FIFO contains Good Data, and the newly arrived data
contains an exception condition.

When any of these conditions occur, the modified service request vector indicates to the host that
the service request is for Good Data. The CD1865 continues to add bytes to the FIFO, and it
increments the Count register for each good byte added, and this allows for optimally efficient use
of the FIFO.

It is not necessary to accept any or all of the Good Data that is available when a Good Data
Interrupt is received. If ahost buffer istoo full to accept 8 bytes, asmaller number (even 0) can be
read, the service request context left, and the host buffer handled first. The CD 1865 again generates
another Good Data Service Request when any of the three conditions listed above are met.

Datasheet

intel.

5.4.1.2

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

If the condition that caused the request in the first place remains true, the CD1865 quickly
generates another service request. If no dataisread, thisis always the case. If some, but not all, of
the available datais read, Conditions 1 and 2 are not true, but Condition 3 may be trueif an
exception condition is the cause of the Good Data Interrupt. If this becomes a problem, one
solution isto temporarily disable receiving interrupts on that channel. To avoid FIFO overflow, do
not disable the channel for very long.

Receive Exception

Unusual or exception conditions are reported to the host one character at a time through the
Receive Exception Service Request. As with normal receive processing, the host determines the
requesting channel by reading the GCR. It can then determine the specific exception(s) by reading
the Receive Character Status register.

Exception conditions are generated for parity errors, framing errors, FIFO overrun, special
character recognition, break detect, and for a special feature called the ‘No New Data Timer’
(NNDT).

NNDT is areceive timer option to generate a service request for the first receive data time-out
following the transfer of all data from the FIFO to the host. It is often useful, when managing
relatively large 1/0 buffers, for an I/O processor to determine that * no data has arrived lately’. This
event is used to transfer the contents of the local buffer that has been storing data from the CD1865
FIFO for host-system processing.

This service request is a receive exception sub-type, and can be used to signal that it istime to
transfer the buffer. This feature can be enabled or disabled by controlling the NNDT bit in the
Service Request Enable register. As shown in Figure 7, every time areceived character is loaded
into the FIFO, the timer isrestarted. If the timer times-out, the CD1865 checksiif thereis any data
inthe FIFO. If thereis, a Good Data Service Request is posted to avoid ‘ stale data' . If thereisno
datain the FIFO, the CD1865 checks that NNDT is enabled and ‘armed’. Arming occurs when the
last character is transferred out of the FIFO to the host. If NNDT is on and armed, a Receive
Exception Service Request is posted to inform the host of this event. Note that the NNDT is not
armed if the last character removed from the FIFO is an exception character.

Every Receive Exception isaunique, one-character event. The Receive Data Count register has no
meaning, unlike the Receive Good Data case, the Status byte in the receive exception handling
routine must be read. The Receive Data Count register and the associated data character is
discarded by the CD1865 at the end of the service routine. The Status byte must be read before
reading the Data byte. Once the Data register is read, the Status byte is no longer available.

33

CD1865 — Intelligent Eight-Channel Communications Controller

Figure 7. Receive Timer Operation

BACKGROUND SCANNING
DETECTS NEW CHARACTER
ARRIVED

!

PUT CHARACTER IN FIFO;
RELOAD TIMER

RESUME BACKGROUND
SCANNING LOORP...

...FROM OTHER
BACKGROUND
PROCESSING...

NO NEW DATA
TIMEOUT FEATURE
ENABLED
?

NNDT
INTERNAL FLAG

'ARMED’
?

POST RECEIVE GOOD
DATA SERVICE REQUEST

CLEAR NNDT
INTERNAL FLAG

!

POST RECEIVE EXCEPTION
SERVICE REQUEST

RESUME BACKGROUND
SCANNING LOORP...

34

Datasheet

intel.

5.4.2

5.4.3

5431

5.5

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Transmit Service Requests

Each transmitter contains 8 bytes of Transmit FIFO in addition to the Transmit Holding register
and the Transmit Shift register. As datais being transmitted, the FIFO status is being monitored by
the CD1865. A service request isinvoked for one of the following conditions:

¢ Transmit FIFO Empty — When the Transmit FIFO is empty, thereis still one character in the
Transmit Holding register and one character in the Transmit Shift register. The host has two
character times to respond to this request without causing a gap in the Transmit Data Stream.

* Transmitter Empty — The Transmit FIFO, Transmit Holding register, and the Transmit Shift
registers are now empty. This signifiesthat all characters written to the FIFO are completely
transmitted.

The host can select which one of these causes a Transmit Service Request, and it is used by
programming the options in the Service Request Enable register (SRER).

Data must not be put into the Transmit FIFO at any time other than when the CD1865 isina
Transmit Service Request context for that channel. During atransmit service, characters (up to
eight) are placed into the FIFO by the Transmit Dataregister (TDR).

Modem Signal Change Service Requests

The CD1865 can be programmed to assert a service request when a channel’s modem input signals
has changed states. The change-detect options are programmed in the Modem Change Option
registers. Individual modem pin service requests are enabled by setting the corresponding bitsin
the Service Request Enable register.

The host must read the Modem Change register during a modem change service to determine
which modem signal changes were detected. Thisisindicated by a‘1’ in the appropriate bit
location. The Modem Change register must be reset to a0’ by the host before exiting the service
request because the CD1865 does not do this. Refer to Section 7.4 for more details.

Using Modem Pins as Input/Output

The pins labelled as modem pins are general-purpose |/O pins that can be controlled by either the
CD1865 processor or the host system. There is no direct, hardwired connection from any modem
pin directly to a transmitter or areceiver. This means that these pins can be used for general-

purpose /O if they are not needed for modem-control purposes. See Section 7.4 for more details.

Implementing Service Requests

The CD1865 isdesigned to easily interface with any processor, yet be efficient and flexible enough
to provide maximum throughput. The CD1865 generates service requests and waits for
acknowledgments of these from the host. However, service requests can be implemented in either
hardware or software; likewise, acknowledgments can be affected either way to offer maximum
advantages to the system designer and programmer. This interfacing can be grouped as various

steps.

Service requests must be ‘noticed’ by the host system before they can be acted on, and this can be
done the following three ways:

35

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

1. Providethree levels of interrupt support, with three separate levels and three separate vectors.
Thisiswell-suited to Motorola~ 680X 0 processors.

2. Provideasinglelevel of interrupt support; thisis an effective method when using 8-bit
processors such as the Z-80 and many Intel”
Mi Croprocessors.

3. Poll the device directly in software.

Once the host has ‘noticed’ the service request, it has the following two choices for acknowledging
the request and beginning to service it:

¢ Acknowledge the request by a hardware-based service acknowledgment, asistypically done
in interrupt-driven systems.

¢ Acknowledge the request in software by reading from aregister in the CD1865.

Table 4. Service Request Methods

How the host detects the Service Request

1. Three-level 2. Single-level

Hardware Hardware 3. Software
Polling
Interrupt Interrupt
2 Harggi:f:’ased la 2a Not recommended 3a Not recommended
How the host acknowledge Full Interrupt — Type A (Inefficient) (Inefficient)
acknowledges the
Interrupt b. Software-based 1b ob n
service _
acknowledge Full Interrupt — Type B | Single Interrupt Software Polled

Thus, there are six theoretically possible options for interfacing the CD1865 to the host system.
Two of the methods (2a and 3a) are not practical to implement without external hardware, and offer
no performance advantage. Each of the other four methods has advantages and drawbacks
depending on the type of host CPU being used and whether or not that host CPU supports more
than one CD1865. The four methods used are listed in Table 4.

¢ Thismethod iscalled ‘Full Interrupt — Type A'. The system is fully interrupt driven with
acknowledgmentsin hardware. It requires a host with at least three interrupt priority levels
available and the ability to acknowledge on multiple levels. Thisis the technique used by
M otorola 680X 0 processors. It isthe most efficient method when the host CPU has arelatively
fast interrupt context switch time and when the host CPU has duties other than driving the
CD1865s.

¢ Thismethod iscalled ‘Full Interrupt — Type B'. It still has three levels of interrupt, but
provides a single acknowledgment level. It is commonly used in Intel-type processor systems
where there is an 8259A interrupt controller. The 8259A receives the three levels of interrupt,
but it provides its own vector to the host rather than that of the CD1865s. Then the host
acknowledges the CD1865s Service Request by reading the Vector register.

¢ Thismethod iscalled ‘ Single Interrupt’, and is best-suited to systems having only asingle
interrupt input, such as most 8-bit microprocessors. After the host receivesitsinterrupt and is
entering itsinterrupt service routine, it reads the CD1865 to eval uate which of the three types
of servicerequestsis responsible for the interrupt. Then it acknowledges the interrupt by
reading the appropriate Request Acknowledge register. Note that the single interrupt signal
must be generated by the logical OR of the three request outputs with external output gates,
not by ‘wire-OR’ing’ them.

36 Datasheet

intel.

5.5.1

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

* Thismethod is called ‘ Software Polled’. Polling is often used in situations where the host
system is primarily dedicated to servicing the serial channels and has few other tasksto
perform. It isusually better when the host CPU has along interrupt context switch time. In this
method, the host periodically checks the CD1865s to determine if any service requests are
pending. If they are, the host acknowledges them in software and proceeds with the service.

One of the advantages of the CD1865 is that it allows the use of any of the above techniques, or a
combination. Such acombination isreferred to as ' Mixed-mode operation’. In atypical mixed-
mode design, normal interrupts are used to signal to the host that service is required. After the host
entersitsinterrupt service routine, it services the CD1865 that generated the service request. Then
the host polls the CD1865s to determine if more channels require service. If the host finds a
channel requiring service, it handlesit in the usual manner, and then proceeds to poll for more
service requests. This process continues until all CD1865s are handled. Because the host is not
exiting and re-entering its own interrupt context each time, much host CPU timeis saved, resulting
in even faster overall performance.

The Advantage of a mixed-mode design is that the software has complete control of whether to be
fully interrupt driven or to poll in certain circumstances. A mixed-mode design is recommended to
tune a system for optimum performance.

A CD1865 evaluation board can be employed to analyze CD1865 performance and evaluate
different software implementations. Intel testing (in an AT-compatible ' 386 machine) found that a
mixed-mode system provided the highest overall throughput with minimum host CPU loading.
Thisis generally found to be the case with host processors that have relatively long interrupt
response times, such as the Intel * 386.

Method 1a — Full Interrupt — Type A, Three-Level Interrupt
with Three-Level Acknowledge

Thismethod isillustrated in Figure 8. It is best-suited for 680X 0-family processors. The three
CD1865 service request lines are connected to the Interrupt Priority Encoder. When the host
performs an interrupt acknowledgment cycle, the CD1865 responds with its vector. The host uses
this vector to jump directly to the appropriate service routine. Other methods can a so be used with
a 680X 0-based system.

37

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Figure 8. Three-Level Interrupt with Three-Level Acknowledge Example

RREQ*
TREQ*
MREQ*

EIGHT-LEVEL ACKOUT* ACKIN*
PRIORITY CD1865 # 2
ENCODER

IPL1

IPL2 _

DO0-D7
CS*

IPL3 —— A3-A6
— AO-A2

M68000
MICROPROCESSOR RREQ*

TREQ*
MREQ*

ACKIN* ACKOUT*
ADDRESS CD1865 # 1
AS* DECODE
DO-D7

A8-A23 LOGIC cs*

A4-A7 A3-A6

Al-A3 AO-A2

DO-D7

5.5.2 Method 1b — Full Interrupt — Type B, Three-Level

38

Interrupt with Single-Level Acknowledge

Thismethod isillustrated in Figure 9. It is useful with 80X 86 systems that use the 8259A Interrupt
Controller. Since the 8259A supplies its own vector to the host when an INTA cycle occurs, the
host can simply read the CD1865's vector by the method described in the polled interface example
or a separate device select decode can be provided to drive the ACKIN* input.

After the 8259A supplies a vector to the 80X 86 host CPU, the host performs a software
acknowledgment to the CD1865, and transfers the CD1865 vector to the host. This allows the
service request to be processed.

Datasheet

intel.

Figure 9. Three-Level Interrupt with Single-Level Acknowledge Example

Intelligent Eight-Channel Communications Controller — CD1865

INT

MICROPROCESSOR

ALE
A8-A23
A4-AT7
Al1-A3
DO0-D7

INTERRUPT
CONTROLLER
(8259A OR
EQUIVALENT)

RREQ*

TREQ*

MREQ*

ACKOUT* ACKIN*
CD1865#1

DO-D7

cs*

A3-AB

AO-A2

ADDRESS
DECODE

LOGIC

RREQ*
TREQ*
MREQ*
ACKIN* ACKOUT*

CD1865 # 2
D0O-D7
Ccs*
A3-A6
AO0-A2

5.5.3 Method 2b — Interrupt Interface, Single-Level
Interrupt with Single-Level Acknowledge

Thismethod isillustrated in Figure 10. It is best-suited to host systems having a single interrupt
input. The three service request lines from the CD1865 are run through an ‘ OR’ gate to the host's
interrupt input. When an interrupt occurs, the host system polls the CD1865s, determines which of
the three levelsisinterrupted, and acknowledges it accordingly.

Datasheet 39

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Figure 10. Single-Level Interrupt with Single-Level Acknowledge Example

MICROPROCESSOR

[RREQ*

MREQ*

ACKOUT* ACKIN*
CD1865 # 1

DO-D7

Ccs*

A3-AG6

| AO0-A2

RREQ*

TREQ*
MREQ*

ACKIN* ACKOUT*

ADDRESS CD1865 # 2
DECODE

ALE LOGIC DO-D7

A8-A23 Cs*

A4-A7 A3-A6

Al-A3 AO-A2

DO-D7

5.54

40

Method 3b — Polled Interface

Thismethod isillustrated in Figure 11. Polled operation can be used with any type of host CPU, or
it can be used in combination with interrupts to provide a mixed-mode system optimized for a
particular application. In apolled system, the host reads the Service Request Status register (SRSR)
within the CD1865 to determine whether there are any channelsthat need service. (Note that unlike
traditional UARTS, only one register needs to be read to determine if there are any channelsin any
device that need attention, and this savestime).

If the host finds channels needing service, it acknowledges the required type by reading one of the
three Request Acknowledge registers. These provide a vector that can be used to jump directly to
the correct service routine. Processing from this point proceeds as in the case of interrupt-driven
operation. Note that the difference between this method and Method 2b liesin how the host system
becomes aware of the need to service the CD1865. In Method 2b a single interrupt starts the
process. In Method 3b the host polls periodically. The two methods can be combined — an
interrupt triggersthefirst service, but the host continues to poll until any other pending requests are
serviced.

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Thereis adifference between the CD1865 and conventional dumb UARTS that makes the CD1865
more efficient even when operating in a polled environment. With adumb UART, the host polls
each channel in turn to determine whether it has any data. With the CD1865, the host pollsthe
CD1865s as a group for whether it has data. If it does, the CD1865s indicates the channel, rather
than the host testing each channel in turn. In fact, it is not possible for the host to dictate which
channel is serviced; the CD1865 determines this order. This minimizes both the number of polling
steps required and the amount of time each needs. This also ensures fair, balanced service of al
channels.

There are several ways that a host system can poll the CD1865. Each method has certain
advantages. The most direct method is to read the Service Request Status register (SRSR). This
register contains three bits that indicate whether there is arequest pending for receive, transmit, or
modem signal change, on the CD1865 being read. There are three more bits that provide the same
information for all CD1865s in the system — these three hits reflect the state of the wire-OR’ ed
external request lines. Thus asingle read operation can determine if there is any activity.

Figure 11. Simple Software Polled Interface Example

— RREQ*
— TREQ*
_ | MRrEQ*
ACKOUT* ACKIN* |

CD1865 #2

DO0-D7

A3-A6

A0-A2

MICROPROCESSOR

— RREQ*
— 1 TREQ*
__ | MREQ*

—] ACKIN* ACKOUT* ||

CD1865 #1
DO-D7
A4-A7 A3-A6
A1-A3 AO0-A2

DO-D7

Datasheet

41

CD1865 — Intelligent Eight-Channel Communications Controller

5.

5.5

INlal.

Comparison of Interrupt and Polled Code Sequences

Figure 12 and Figure 13 show the code sequences for polled and interrupt service request methods.

Figure 12. Polled Code Sequence

l

READ SERVICE REQUEST STATUS
FROM SRSR

RECEIVE

REQUEST Y

PENDING?

TRANSMIT TO

REQUEST | » TRANSMIT

PENDING? ROUTINE

TO
MODEM SIGNAL CHANGE > MODEM

REQUEST PENDING? ROUTINE

Y

READ RRAR TO ACKNOWLEDGE,
GET STATUS VECTOR

HANDLE
‘BAD’
DATA

GOOD DATA
?

READ REQUESTING CHANNEL NUMBER

READ NUMBER OF BYTES FROM RDCR

SET UP HOST'S BUFFER POINTERS

SET LOOP COUNTER = RDCR

READ RDR

WRITE DATA TO POINTER LOCATION

INCREMENT POINTER

DECREMENT LOOP COUNTER

IF
LOOP COUNTER =0

SAVE POINTER

(s)

42

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

Figure 13. Interrupt Code Sequence

(INTERRUPT OCCURS

ENTRY POINT FOR
- GOOD DATA INTERRUPT

SERVICE ROUTINE

READ REQUESTING CHANNEL NUMBER
|
READ NUMBER OF BYTES FROM RDCR
|
SET UP HOST'S BUFFER POINTERS
|
SET LOOP COUNTER = RDCR

READ RDR
|

WRITE DATA TO POINTER LOCATION
|

INCREMENT POINTER
|
DECREMENT LOOP COUNTER

IF
LOOP COUNTER =0

SAVE POINTER
|

(EXIT ISR)

5.5.6

Datasheet

Cascading Service Requests with Multiple CD1865s

Regardless of the method used to support service requests, multiple CD1865s can be cascaded by
tying together al * lines, all * lines, and * lines. These lines are open-drain so they may be wire-
OR’ ed. The CD1865s are then daisy chained by simply connecting the ACKOUT* of one deviceto
the ACKIN* of the next.

The host knows which CD1865 is requesting service by the ID value returned through the Global
Interrupt Vector register. Up to 32 CD1865s can be cascaded in any one daisy chain in this manner.
Since multiple daisy chains are possible, the maximum number of CD1865s can be large. The 32-
per-daisy-chain limit is set by the five bits in the GVR. These bits can be used to identify which
CD1865 responded to the service request acknowledge cycle. The user must program different
values into the upper-five bits of each CD1865s GVR.

43

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

5.5.7

5.5.8

44

Note:

Note that thirty-two CD1865s isthe logical limit per daisy chain. Sinceit takes over 1000 ns for an
acknowledgment to ripple down 32 devices, it may not be efficient to have one long chain in
heavy-traffic applications.

In some systems that daisy chain many CD1865 devices, a potential timing hazard existsif the host
processor does not allow sufficient time for the removal of the ACKIN*/ACKOUT* daisy-chain
signal to propagate through all devices. In the event that the host processor begins I/O operations
with another section of logic and applies DS* (RD* or WR* in an Intel environment) while an
active ACKIN* isbeing applied to a CD1865 due to propagation delay time, unpredictable results
can occur. This congtitutes anillegal acknowledge cycle. The failure mode is most often a cessation
of service requests from the device, especialy of the type that is being serviced when theillegal
access occurs. Take care to ensure that the 35-ns propagation delay per deviceisincluded in any
wait-state generation.

Multiple CD1865s without Cascading

Itispossible to interface several CD1865s without using the cascade feature. Thereis an advantage
to this because as there is less delay incurred while waiting for the service acknowledgment to
ripple down a chain of devices. There are two possible disadvantages. If each of the CD1865's
three service request lines has a separate input to the interrupt controller, the interrupt controller is
more complex, and the fair-share feature does not work. If the service request lines are wire-
OR’ed, fair share works, but the host has to test each CD1865 in turn to see which one generated
the service request. To implement this method, simply connect the CD1865 address and data lines
in the usual manner.

Acknowledging Service Requests

As mentioned in Section 5.5 on page 35, two different methods are used to acknowledge a service
request. One method is hardware-based, and the other is software-based. The hardware-based
mechanism is a specific type of bus cycle that usesthe ACKIN* and ACKOUT* signalsand the in
the CD1865. An acknowledge cycle is defined where ACKIN* and DS* are active and CS* is
inactive. This method is used by processors that perform interrupt acknowledge cycles, such asthe
680X0.

The software-based mechanism uses three registers — Receive Request Acknowledge register,
Transmit Request Acknowledge register, and Modem Request Acknowledge register. Reading any
of these registers has the effect of acknowledging a service request, and the data read is the
appropriate vector, that is, the contents of the Global Interrupt Request Vector register. The low-
three bits of this register are modified to indicate the specific type of interrupt being acknowledged.

If the host reads these registers when no service request is pending, either of two things can
happen. If daisy chaining of acknowledgmentsis enabled, the ACKOUT* pin of the CD1865
asserts. If daisy chaining is not enabled, the part supplies a vector with the low-three bits set to a
‘0. Thus, it is possible to ‘fish’ for service requests, that is, to acknowledge each CD1865 in turn
until a non-zero vector isreceived.

‘Fishing’ is not usually an efficient software technique, but can be useful in some circumstances.
For example, in systems that are normally interrupt-driven, but where interrupts are not available
for diagnostics or other reasons, the host can determineif a service request is pending by reading
the appropriate Request Acknowledge register. The CD1865 must be configured not to daisy chain;
in this case it returns a vector if arequest is pending, or ‘00’ if no request is pending. The host can
try all three levels of request in turn. This method works for either single CD1865s or multiple

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

devices. In multiple-device systems, either disable daisy chaining on all devices and ‘fish’ each
individually, or disable daisy chaining on the last device only and ‘fish’ the device at the beginning
of the chain.

Both methods of acknowledging service requests can be used interchangeably. It is usually
advantageous to use Mixed mode. For example, after receiving an interrupt and servicing it in the
normal manner, the host should read the Service Request Status register (SRSR) to see if other
requests are pending. If so, the host can acknowledge by reading the appropriate Request
Acknowledgeregister (RRAR, TRAR, and MRAR) and proceed to service the request. Thisavoids
the time required for the host to exit itsinterrupt routine, only to re-enter it immediately for the next
request.

45

CD1865 — Intelligent Eight-Channel Communications Controller

6.0

System Bus Interface and System Clock

Figure 14. Internal Block Diagram

RECEIVE BIT
ENGINE

l«— RXDATA

TRANSMIT BIT
ENGINE

— TXDATA

JDUAL-BAUD RATE

GENERATORS

RECEIVE BIT
ENGINE

l«— RXDATA

TRANSMIT BIT
ENGINE

> TXDATA

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

l«— RXDATA

RREQ"<—| RECEIVE
TREQ*<— | servicE |
MREQ*<—| REQUEST
QUEUE
ACKOUT*<—|
ACKIN* —»]
SERVICE | [rrANSMIT
REQUEST| | SERVICE ROM
LOGIC [|REQUEST
QUEUE
Service |-
HreQuesT—{ CPY H
QUEUE
INTERRUPT
ADR[0-6 HANDLER
DATA[1-7]<>]
CS* —>]
DS* —»]
R/W —»]
DTACK* 5] BUS RAM
INTERFACE
INTEL/MOT*—»
RESET*—>]
CLK—>|
DBLCLK —> PER
NO_OSC—> CHANNEL
OSC1—» TIMER
OSC2 —>
——» RTS*
« CTS*
DTR*
l«——— DSR*
1/0 PINS cp*
(MODEM Lo s> 5LINES
CONTROL) N 5LINES
A 5LINES
\ 5 LINES
\ 5LINES
> 5 LINES

<> 5 LINES

TRANSMIT BIT
ENGINE

—> TXDATA

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

l«— RXDATA

TRANSMIT BIT
ENGINE

— TXDATA

DUAL-BAUD RATE
GENERATORS

L

RECEIVE BIT
ENGINE

l«— RXDATA

TRANSMIT BIT
ENGINE

[—> TXDATA

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

l«— RXDATA

TRANSMIT BIT
ENGINE

— TXDATA

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

l«— RXDATA

TRANSMIT BIT
ENGINE

— TXDATA

DUAL-BAUD RATE
GENERATORS

RECEIVE BIT
ENGINE

l«— RXDATA

TRANSMIT BIT
ENGINE

— TXDATA

L DUAL-BAUD RATE

GENERATORS

46

Datasheet

intel.

6.1

6.2

6.2.1

6.2.2

Intelligent Eight-Channel Communications Controller — CD1865

System Interface Considerations

When using the CD1865, two areas where system architects, designers, and programmers should
consider options are system clock speed, and unclocked versus clocked-host bus interface.

System Clock and Bit Rate Options

System Clock

System clock is a high-frequency clock (supplied by the user) used by the CD1865 to receive all
the necessary timing. The CD1865 is capable of handling system clock levels of TTL-compatible
voltage swings; however, the V| and V4 specifications are not identical to all families of TTL
logic. Specifically, the clock signal (and the reset signal) have lower V| and higher V| than the
worst-case specifications of some TTL families. In general, any TTL family is adequate if not
heavily loaded. Refer to the DC Specificationsin Section 10.3 for details.

xxxxxxXThe CD1865 can be operated from the main system clock or its own clock. Operation from
the main system clock can reduce the number of clocks required, and it allows the bus interface
between the system and the CD1865 to be clocked, but in general, typical system clock speeds are
not exact baud-rate multiples. As bit rates are received from the clock, it isimportant to consider
this when selecting a clock value. If exact baud rates are needed, or the system clock is not a
convenient value, the CD1865 must be supplied with its own clock or crystal.

External Clock

It isrecommended that the 2x-clock option (oscillator or crystal) be used wherever possible. Figure
15 shows a possible design configuration for the clock circuitry if the crystal is being used. Please
refer to the CD1865 Evaluation Kit documentation for details on the design configurations used.
The crystal used for the evaluation board is a 66-MHz third overtone part.

Figure 15. 2x Clock Option

Datasheet

OSC 2

o—||:| |70$c1

200K-500K

| e Ve V4 Vo W

~ 33pF ~ 33pF

47

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Figure 16.

NO_0SC >O—|\ I_
0 ° DO7
CKOUT

osc1 >

osc2 R0
DBLCLK T

FROM RESET LOGIC
CLK
6.2.3 1x Clock Option

6.2.4

48

It is recommended that a 2x-clock option be used where ever possible. If using a 1x-clock options,
refer to Table 10 on page 129 for clock duty cycle requirements.

Bit Rate Options

The CD1865 supports independent transmitter and receiver bit rates on each of its eight channels.
The bit rate is determined by a 16-bit period value (divisor) stored in the Transmitter Bit Rate
Period registers (TBPRH and TBPRL), or in the Receiver Bit Rate Period registers (RBPRH and
RBPRL). These registers establish the period of the corresponding Transmitter and Receiver Bit
Rate counters. To set agiven hit rate, the value to be loaded is determined by the following
equation:

(CLK frequency {in Hertz})

Bit Rate Divisor = (16 x desired Bit Rate {in bits per second})

This equation may yield a non-integer result. The nearest integer value is the optimum choice for
that bit rate and system clock combination. The value loaded in the Bit Rate Period registers must
be that integer expressed as a 16-bit binary value. If rounding is necessary, the percentage bit rate
error can be calculated by:

(Bit Rate Divisor — Integer) % 100/ Bit Rate Divisor

The popular bit rates and their corresponding divisors at various system clock rates are shown in
Table 5.

Datasheet

In

Table 5.

Table 6.

Datasheet

Bit Rate Constants, CLK = 33 MHz

Intelligent Eight-Channel Communications Controller — CD1865

Bit Rate Divisor' Error
110 493e 0.000%
150 35b6 0.000%
300 ladb 0.000%
600 dée 0.015%
1200 6b7 0.015%
2400 35b 0.044%
4800 lae 0.073%
9600 d7 0.073%
19200 6b 0.393%
38400 36 0.538%
56000 25 0.461%
57600 24 0.538%
64000 20 0.703%
76000 1b 0.509%
115200 12 0.538%
TAll divisor values are in hex.
Bit Rate Constants, CLK =25 MHz
Bit Rate Divisor' Error
110 377d 0.003%
150 28b1 0.003%
300 1458 0.006%
600 azc 0.006%
1200 516 0.006%
2400 28b 0.006%
4800 146 0.147%
9600 a3 0.147%
19200 51 0.467%
38400 29 0.762%
56000 1c 0.352%
57600 1b 0.467%
64000 18 1.696%
76000 15 2.144%
115200 e 3.219%

TAIl divisor values are in hex.

49

CD1865 — Intelligent Eight-Channel Communications Controller

Table 7. Bit Rate Constants, CLK =20 MHz

Bit Rate Divisor' Error
110 2c64 0.003%
150 208d 0.004%
300 1047 0.008%
600 823 0.016%
1200 412 0.032%
2400 209 0.032%
4800 104 0.160%
9600 82 0.160%
19200 41 0.160%
38400 21 1.376%
56000 16 1.440%
57600 16 1.376%
64000 14 2.400%
76000 10 2.720%
115200 b 1.376%
TAll divisor values are in hex.
Table 8. Bit Rate Constants, CLK =15 MHz
Bit Rate Divisor® Error

110 214b 0.003%
150 186a 0.000%
300 c35 0.000%
600 6la 0.032%
1200 30d 0.032%
2400 187 0.096%
4800 c3 0.160%
9600 62 0.352%
19200 31 0.352%
38400 18 1.696%
56000 11 1.547%
57600 10 1.696%
64000 f 2.400%
76000 c 2.720%
115200 8 1.696%
TAll divisor values are in hex.

50

Datasheet

intel.

6.2.5

6.3

6.3.1

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Maximum Throughput Limits

The CD1865 isinternally afully static, synchronous design. Consequently, the maximum data rate
handled by CD1865 is determined by the clock speed at which it is operating. There are afixed
number of CD1865 processor cycles required to process each bit and character; a slower CD1865
processor rate equates to a dower bit rate. The minimum clock frequency required can be
determined by the data rate needed for support.

In general, the CD1865 can maintain 100% full-duplex throughput when divisors of 16 or greater
are used. For a given master clock frequency, this limitation can be used to determine the
maximum bit rate at which the system can sustain 100% throughput on both receive and transmit.
Divisors as small as 12 can be used, however a degradation in throughput is observed. This
degradation is seen as gaps between transmit characters and are, in effect, extralong stop bits. This
is afail-safe condition. Divisors smaller than 12 can work in an application if less than eight
channels are enabled.

CD1865 Basic Bus Interface and Addressing

The CD1865 is addressed through an active-low Chip Select (CS*) in conjunction with seven
Address Inputs A[0:6] that are mapped CD1865 internal addresses in two addressing modes —
global and channel. In Channel Addressing mode, the bits defining the channel to be accessed are
provided from the Channel Access register (CAR) within the CD1865.

The most-significant Address Input (A6) performs the selection between global - and channel -
specific addresses. If thishitisa‘1’, the addressis global, and is not associated with any specific
channel. If thisbitisa'0’, the addressis channel-rel ated.

With the exception of the FIFOs, all channel-specific registers are accessed by first setting the
required channel number in the low-three bits of the Channel Accessregister. FIFOs can only be
accessed within the context of a service routine. Attempting to force accessto a particular FIFO by
setting the CAR causes unpredictable and incorrect results. Within the context of a service request,
the effective channel access valueis automatically controlled by the CD1865, thus the CAR should
not be modified by the host system during service-request processing.

The advantage of this method isthat the host never performs any address computation to accessthe
CD1865 during service requests. Because only the registers specific for the active channel (that is,
the one being serviced) are accessible to the host within a service request routine. An automatic
indexing feature handles this, thus avoiding any burden on the host. Refer to Section 9.3 on
Indexed Indirect registers for details.

Intel” Versus Motorola® Interface Signals and Addressing

The CD1865 supports two bus handshake methods. One is patterned after the Motorola 680X 0-
family processors, and the other after Intel 80X86-bus interfaces. bus interface selectionis
achieved by the INTEL/MOT* signal. When thissignal is‘high’, the Intel businterfaceis selected,
and when thissignal is‘low’, the Motorola bus interface is selected. This selection affects the
logical meaning of two pins, but has no effect on bus timing.

The two signals having dual meaning are RD* versus DS*, and WR* versus R/W*. When the Intel

businterface is selected, these two pins function as RD* and WR*. These pins can be connected to
either the IOR* and IOW*, or to MEMRD* and MEMWR* depending whether the CD1865 is

51

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

6.3.2

52

mapped into memory or 1/O space. These pins then serve to select the CD1865, and when either is
active (along with CS* or ACKIN*) the CD1865 considersitself selected. CS* and ACKIN* must
never be active at the same time.

When the Motorola businterfaceis selected, these two signals function as DS* and R/W*. DS*
must be asserted (along with CS* or ACKIN*) for all types of cycles, and R/W* should be low
when writing to the device.

In either case, the choice of businterfaceis entirely up to the user. This featureisfor user
convenience, and to accommodate the address and bus-control logic that are used. The CD1865 has
an 8-bit data bus, and it is acommon practice (when connecting 8-bit peripheralsto 16- or 32-hit
systems) to connect them to only one lane, or 1-byte position. Thus, the CD1865 registers only
appear in the host’s address space at every other byte address. The most common practiceisto
connect the CD1865 to the portion of the data bus |abelled DO-D7. For the little-endian processors,
such as Intel’s, the CD1865 appears at even addresses (A0 = 0). For big-endian processors, such as
Motorola's, the CD1865 appears at odd addresses.

Unclocked Versus Clocked Bus Interface

Depending on the type and speed of the host processor, another important choice is determining
whether the system bus interface will be clocked or unclocked with the host CPU clock. Because
thereisasingle clock for both the bus interface and bit-rate generation, the decision to use either
Clocked or Unclocked bus interface is affected by whether exact bit rates are required. Most
applications do not require exact bit rates, and operate with rates varying by one percent or so. If
exact bit rates are required, the clock speed must be a baud-rate multiple.

One method of bus interfacing may be preferable to another in certain applications. Although the
easiest way to interface to the CD1865 is by using the unclocked handshake supplied by DTACK*,
in some cases it may be better to design a clocked interface. The latter istrueif the host systemis
running at the same clock speed (or amultiple) of the CD1865 speed.

Unclocked Bus Interface

An Unclocked businterface isthe easiest interface to implement. Simply connect the address, data,
and control lines in the customary manner, and use DTACK* to control the number of wait states
either by connecting it to the processor’s DTACK* (if it has one), or by feeding into a wait-state
generator. Figure 17 on page 53 shows a typical Unclocked bus interface.

The maximum bus cycle timeistwo clock periods plus 10 ns, though typically less because this
specification is based on worst-case internal synchronization delays. Using DTACK* savestime;
however, it is permissible to hard-wire the wait-state generator for the maximum time.

Clocked Bus Interface

The CD1865 businterfaceis controlled by a state machine that samples on the falling edge of the
clock. External strobes (CS*, DS*, and R/W*; or CS*, and RD* or WR*) that meet the setup time
requirement cause a bus cycle to begin. The external interface can be designed to meet these setup
time regquirements, and to have shorter CD1865 access cycles. Figure 18 on page 54 shows a
typical Clocked businterface.

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

A bus cycle consists of two half-clock periods. During the clock-low period, the transaction is set
up internally, and the local bus arbitration occurs. During the clock-high period, the read or write
transaction to RAM occurs. On write cycles, the datafrom the host islatched internally on the low-
to-high clock transition. On read cycles, the datais available shortly after the end of the clock-high
period.

Read and write cycles differ slightly in timing; during awrite, it is permissible to remove the WR*
or DS* relatively early during the high-clock period, however, this cannot be done during read
cycles. The RD* or DS* Strobeis used as an output enable, and must remain low for the datato
appear on the external data bus.

Service request acknowledgment cyclesfollow adifferent timing than ordinary read cycles. First, it
is necessary to have the address stable before asserting ACKIN*. Second, the setup time from
ACKIN* and DS* (or RD*) going low to the falling clock edgeislonger dueto additional internal
logic involved in service request acknowledge cycles.

Figure 17. Typical Unclocked Bus Interface

A[0:6]

X X X

R / \ A

CS*, DS*

\ / —
DB[0:7] ()
DTACK*
\ —
Datasheet 53

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Figure 18. Typical Clocked Bus Interface

CD1864 /—\—/—\—/—_
CLOCK

ps* _\ / \ NEWCYCLE MAY BEGIN
T\ /
R / \ DON'T CARE
ADDRESS DONT CARE X VALID X DON'T CARE
DATA-READ { UNDEFINED X valp

(NAAAANAN

6.4 Interface Examples

There are some general design considerations when interfacing the CD1865 to any host
environment.

The three Service Request pins (*, *, and *) can change at any time, and this can introduce
metastability problemsif the interrupt controller requires clocked signals. When designing, take
carethat all signals are stable when needed.

The Service Request pin of the type being acknowledged is negated at the end of the service
acknowledgment bus cycle. Often, during the course of servicing one channel, another channel
reaches a state where areguest would assert, for example, while servicing receive on channel one,
channel twao's FIFO fills. The Service Request bits in the Service Request Status register (SRSR)
does not reassert until approximately two clock periods after the host completesits write to the End
Of register (). In polled or mixed-mode systems, to determine whether another service request of
the same level is pending, and to make sure that the host does not re-read the SRSR too quickly,
insert a No-Operation (or similar) instruction.

Performing an ‘invalid’ service acknowledgment bus cycle on the CD1865 is permissible, but it
can cause problems in certain circumstances. An Invalid Service Acknowledgment is an
acknowledgment for which there is no request pending.

If aservice request acknowledgment bus cycle is performed by the host when no service request is
pending, either of two things can occur. If the value on the address bus matches one of the three
valuesin the three Service Match registers (), and daisy chaining is enabled, the CD1865 assumes
that another device down the daisy chain should receive the request, and assertsits ACKOUT* pin.
This propagates down the CD1865 chain until eventually the last CD1865 assertsits ACKOUT*.

54 Datasheet

intel.

6.4.1

6.4.2

6.4.3

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

At this point, the system waits endlessly unless the bus cycle terminates. The best method isto
connect the ACKOUT* of the last CD1865 in the chain to abus-error input on the host. If there are
multiple CD1865s that are not cascaded, the ACKOUT* signals should be OR'’ ed together through
agateor aPAL.

If an acknowledgment occurs and the value on the address bus does not match any of the Match
registers, the first CD1865 in the chain does not passit along or assert DTACK* and the system
waits endlessly unless there is a bus time-out or other mechanism to detect this condition. In either
of these circumstances, the ‘value' on the data busis likely to be FFh because the bus is floating
(thisis system dependent). To make arobust design, do not use FFh as avalid Global Service
Vector register (GSVR) value. If daisy chaining is not enabled, then the CD1865 returns a vector of
‘00" for invalid acknowledgments.

Interfacing to 80X86-Family Processors

The Intel 80X 86 family processors often use the 8259A as the interrupt controller, which supplies
its own vector during the INTA cycle. The easiest way to interface the CD1865 to an Intel
processor is by Mixed mode, as described in Section 5.5.

Thereisone‘bug’ in the 8259A to be aware of. The 8259A can change the prioritizing of its eight
inputs, which can result in one of its acknowledge outputs going low briefly (~30 ns) if an input
changes at a certain time. Thistypically occursif ahigher-priority input to the 8259A asserts when
the 8259A is about to issue an acknowledge to a lower-priority device. If this occurs at the
beginning of acycle, this brief pulse can cause the CD1865 (and other devices) to malfunction. Be
sure that this does not occur. See Intel 8259A Data Sheet for details.

Interfacing to 680X0-Family Processors

The 68000-family interface is quite straightforward. The three service request lines go through a
priority encoder to the 680X0 IPL inputs. The CD1865s ACKIN* pinis driven by a decoder.

When the 680X 0 performs an Interrupt Acknowledge cycle, it drivesits addresslines A1, A2, and
A3 with athree-bit value indicating the level being serviced. The other addresslinesare set to a 1.
If the level being serviced correspondsto alevel assigned to the CD1865, external decoding logic
should assert the CD1865 ACKIN* pin. The value on address lines AO to A7 is programmed into
the , so the CD1865 recognizes the acknowledgment and proceeds as described in the Service
Request Section 5.3.1.

All CD1865 service requests can also be routed to asingle interrupt level by using a Mixed-mode
interface, as described in Section 5.5.

Interfacing to the VME Bus

The CD1865 can be directly interfaced to the VME bus, and only requires a small amount of logic
to complete the interface. Thisis necessary because service request acknowledgment works
differently on the VME bus than on the CD1865. VME defines seven levels of interrupts; each
level can be shared among multiple VME cards. During an Interrupt Acknowledge cycle, the VME
bus provides three bits on the address bus, indicating the level being acknowledged (A1-A3). Each
VME card must pass along an interrupt on all levelsit is not using but the CD1865 does not
automatically pass an interrupt acknowledgment.

55

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

To recognize how this difference can cause a problem, suppose that the three Service Request lines
from the CD1865 are connected to levels 7, 6, and 5 of the VME bus (see Figure 19 on page 56).
Also, attach a 74X X 244 so that during an Interrupt Acknowledgment cycle provides an 8-bit code
consisting of the three address bits plus five more hard-wired bits to the CD1865. Now, whenever
an acknowledgment of alevel 5, 6, or 7 interrupt occurs, the CD 1865 either responds or passes the
acknowledgment properly. If an acknowledgment occurs on levels 14, the daisy chain ‘breaks
because the CD1865 does not recognize a match.

Figure 19. Incorrect VME Interface

ACKOUT*
IRQ7* RREQ*
IRQ6* TREQ*
IRQ5* MREQ*
ACKIN* ACKOUT* ACKIN*
A1-A7 ° T AO-AB
IACK* O
T74XX244
VME BUS CD1865
(BUFFERS NOT SHOWN) ‘
A1-A3 ARBITRARY
VALUE

56

This condition can be easily rectified, as shown in Figure 20 on page 57. A PAL is used to assert
ACKOUT* whenever ACKIN* occurson alevel not being used by the CD1865. The PAL is
programmed for fixed levels. For example, if the current VME bus Interrupt level is 1-4, the PAL
asserts ACKOUT* whenever ACKIN* isactive. If the current level is5-7, the PAL asserts
ACKOUT* when ACKOUT* from the CD1865 is active. If required, the assignment of VME
Interrupt levels to the CD1865 can be field-programmable by supplying additional inputs to the
PAL, indicating the levels being used by the CD1865.

Datasheet

intel.

Figure 20. Correct VME Interface

Intelligent Eight-Channel Communications Controller — CD1865

ACKOUT*

IRQ7*

IRQ6*

IRQ5*

IRQ4*

IRQ3*

IRQ2*

IRQ1*

ACKIN*
Al1-A7

PAL

VME BUS
(BUFFERS NOT SHOWN)

T

T4XX244

A1-A3

ARBITRARY
VALUE

RREQ*
TREQ*
MREQ*
ACKOUT*

CD1865

AO-A6

ACKIN*

Datasheet

57

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.0

Serial Interfaces

7.1

7.1.1

7.1.2

Receiver Operation

Basic Operation

All receivers are disabled upon master reset. To prepare areceiver, first initialize and then enableiit.
Once initialized and enabled, the receiver monitors the RxD Line and waits for a high-to-low
transition, which indicates a Start bit. This sampling is performed at one-eighth of the System-
clock rate regardless of the Programmed bit rate, and it provides accuracy of synchronization with
the incoming data. See Figure 21 below for CD1865 bit synchronization. Once atransitionis
detected, the receiver checks the RxD Input state again (ahalf-bit time later) to validate that it isa
Start bit. A valid Start bit isdefined a‘ space’ or alogic ‘0. If the RxD Input isno longer a“ space’,
then afalse Start bit is assumed and the receiver resumes the search for a high-to-low transition. If
avalid Start bit is detected, the RxD Input is sampled at one-bit time intervals in the middle of the
bit to ensure stable data. Characters are assembled according to the programmed content of the
Channel Option register (COR1). Valid character framing (presence of a Stop bit), and Optional
Parity bits are checked. After a character is assembled, it is placed in atemporary Holding register.
Then the CD1865 processor checks for error conditions, FIFO overrun, and special character
match before placing the character and its corresponding status into the Receive and Status FIFOs.

Receive FIFO Operation

Eight bytes of FIFO are assigned to each receiver for data storage, in addition to the Receive
Holding register and the Receive Shift register. Once the number of data bytes received and stored
in the FIFO reaches a programmed threshold, the CD1865 can be programmed to generate a
service request. See Figure 22 on page 59 for Receive Operation. The Receive FIFO Service
Request threshold can be selected by programming the RxTH bits 3:0 in the Channel Option
register 3. A service request threshold of one-to-eight characters can be selected. Once this
threshold is defined, a service request is automatically triggered when the conditionismet. It is
possible that by the time the host responds to the service request, thereis more data in the FIFO
than the threshold level.

Figure 21. Bit Synchronization in CD1865

SAMPLES AT
1/8-SYSTEM
CLOCK

Start
Bit Detect

|||||||||||||||||||||||| full-bit full-bit full-bit | full-bit full-bit | full-bit full-bit | full-bit full-bit
time time time time time time time time time
)] .

1/2-bit
time

58

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

An overrun condition occurs when the new data arrives, but the Receive FIFO and the Receive
Holding register are both full. The new dataislost and the overrun indication is flagged on the
character in the Holding register. That character and its status including the overrun indication is
eventually transferred to the host by a Receive Exception Service Request. Note that this character
isgood, and isthe last character received before the overrun occurred.

Receiver Service Requests are enabled or disabled by the Receive Data bit in the Enable register
(). Receive Data bit, when set toa‘1’, enables service requests to be asserted for the above causes.

The Prescaler Period Counter isa 16-bit counter clocked by the system clock. If the system clock is
a 33-MHz clock, the maximum count establishes a clock tick every 1.9859 ms. The Prescaler
Period should be set to generate a minimum tick period of 1.0 ms. The Receive Time-out Counter
is an 8-hit counter decremental on every tick of the Prescaler Period Counter. At the maximum
count per tick, the maximum time-out period is 0.506 seconds.

The Receive Time-out is always enabled to transfer data when the Receive Data Service Request is
enabled. From the system applications view-point, this time-out function is important for
asynchronous data transmission. Thisis especially true when aFIFO isin use and a service request
threshold for the FIFO is set greater than one character. The Timer Service Reguest eliminates long
response times when excessive delay between characters occurs caused either by the remote
operator or dueto the line being disabled. The‘No New Data’ Timer Service request, which occurs
after all dataistransferred to the host, may be used to manage transfers from the host’s receive data
buffers.

Figure 22. Receive Operation

RECEIVE DATA COUNT REGISTER

RECEIVER

RECEIVE
STATUS

FIFO

FIFO

n T

/BACKGROUND CODE:

H.R.-TO-FIFO TRANSFER, FLOW
CONTROL, OTHER FEATURES

(POLLING LOOP)

RECEIVER HOLDING REGISTER

FULL/
EMPTY

] BIT FOREGROUND CODE:

BIT ASSEMBLY,
S.R.-TO-H.R. TRANSFER | |

(INTERRUPT-DRIVEN)

RECEIVER SHIFT REGISTER

DTR DSR
RECEIVER ouT IN

Datasheet

59

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.1.3

7.1.4

60

FIFO Timer Operations

The CD1865 uses the Receive FIFO Timer for two purposes. Thefirst isto avoid ‘ stuck’ (or
‘stale’) datain the FIFO caused by not receiving enough characters to trip the threshold, which
causes aservicerequest to beissued. The second isto signal the host that there has been arelatively
long pause in received data. It is useful for the host to know that ‘no data has arrived lately’ when
managing relatively large 1/O buffers. This event flushes the buffer up to the host for processing.

To avoid ‘stuck’ data, each time the CD1865 moves a character into a channel’s Receive FIFO, it
sets the channel’s Receive FIFO Timer to the value contained in the channel’s Receive Time-out
Period register (RTPR). If the timer expires before new data arrives, a Receive Good Data sub-type
service request is asserted for the channel if the Receive Data Enable bit in the is set.

The other receive timer option is to generate a service request for the first Receive Data Time-out
following the transfer of all data from the channel to the host. Thisis called the No New Data
Time-out (NNDT). This service request is a Receive Exception sub-type with a status type of
‘Time-out Exception’. There is no data character associated with the Time-out Exception status.
This option can be enabled or disabled by controlling the NNDT bitinthe.

If enough data arrives to fill the Receive FIFO to the level set by the RxTh bitsin CORS3, or if a
special character arrivesin the Receive FIFO and the RxSC bit of is set, the channel assertsthe
Receive Data Service Request without waiting for the timer to expire.

If the timer times-out and the FIFO is not empty, the ‘stale data’ condition has occurred, and the
device posts a Receive Good Data Interrupt. If the timer times-out and there is no data, two
conditions are checked. First, atest ismade to seeif the featureis enabled, if it istrue, then another
flag is tested to make sure thisis the first time the condition has occurred. If thisistrue, a Receive
Exception Service Request is posted. (The NNDT internal flag is armed when the FIFO is
emptied).

Receive Service Requests

The Receive Service Request isunique asit has two sub-types; that is, it is capable of returning one
of two different vectors during a service request acknowledge cycle. The two sub-types are
Receive Good Data and Receive Exception. The reason there are two types within one category of
service reguest is because while Good Data and Exceptions require different handling, they are
both of equal priority and need to be serviced in the order they were received. Suppose, for
example, two good characters are received, then an erroneous character, then another good
character, then there must be a service request for the first 2 bytes of Good Data, then for the
Exception, and then for more Good Data. If Exception Service Requests were at a different level,
the erroneous character would be processed either before or after the Good Data, and not in normal
sequence. Receiver Service Requests are invoked under several conditions.

Conditions that cause a Receive Good Data Service Request are:

¢ Receive FIFO threshold reached or exceeded

* Receive FIFO time-out — interval between character receptions exceeds time-out value
Conditions that cause a Receive Exception Service Request are:

* Receive erroneous data (parity error)

* Framing error (No Stop bit)

* No datareceived time-out (optional)

Datasheet

intel.

Note:

7.1.5

7.1.6

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

* Special character detection
* Break detect

Data cannot be read from the Receive FIFO or the Receive Status FIFO except when the CD1865
iswithin the context of a Receive Data Service Request for a specific channel.

Receive Good Datall Service Request

A Receive Good Data Service Request is asserted for any of the following three conditions:
1. Receive FIFO threshold reached, and the FIFO contains Good Data.

2. Receive FIFO threshold not reached, but the FIFO contains Good Data and the Receive Data
Timer times-out.

3. Receive FIFO threshold not reached, but the FIFO contains Good Data and the newly arrived
data contains an exception condition.

When any of these conditions occur, the modified service request vector indicates to the host that
the service request is for Good Data.

Itisnot necessary to take all or any of the available Good Datawhen a Good Data Service Request
isreceived. If ahost buffer istoo full to accept 8 bytes, asmaller number (evena‘0’) can beread.
Service request context is then left, and the host buffer is dealt with first. The CD1865 generates
another Good Data Service Request when any of the three conditions listed above are met.

The CD1865 immediately generates another service request if the condition that caused it in the
first place remainstrue. If no dataisread, thisis aways the case. If some, but not al of the
available dataiis read, Conditions 1 and 2 are not true; but Condition 3 may be trueif an exception
condition caused the Good Data Service Request. If thisisaproblem, one solution isto temporarily
disable Receive Service Requests on that channel. To avoid FIFO overflow, do not delay handling
the channel for too long.

Receive Exception Service Request

Unusual or exception conditions are reported to the host one character at a time through the
Receive Exception Service Request. As with normal receive processing, the host determines the
requesting channel by reading the GCR. It can then determine the specific exception(s) by reading
the Receive Character Status register before performing the appropriate action. Receive Exceptions
are aways 1-byte deep; multiple bytes of exception conditions causes multiple Receive Exception
Service Requests.

For many exceptions, it is not necessary to read the Receive Dataregister after the Receive Status
register isread. For example, if special character detection is enabled, and the service request isfor
recognition of aspecia character, the character is known by definition because the exception code
indicates the detected character or character sequence.

However, for every exception abyte is placed in the Data FIFO, even though the contents of that
byte may be suspect data, and the byte is discarded at the end of the exception service routine
regardless of whether it wasread by the host or not. Thisis done to keep the Status and Data FIFOs
in lock-step with each other. Thisis different in the case of a Receive Good Data Service Request
where the user isfree to read as many or as few bytes as required.

61

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.1.7

7.1.8

7.18.1

62

Regardless of the number or type of exceptions occurring, they are reported to the host one
character at atime; that is, the number-of-bytes value in the Receive Data Count register is not
meaningful. Since every error is reported individualy, there is no Receive Time-out Exception
generated if the only characters in the FIFOs are error or exception characters.

Types of Errors

There are four types of errors recognized by the CD1865: parity, framing, line break, and overrun.
If parity checking is enabled, parity errors are logged in the Status FIFO and the suspect datais
placed in the Receive Data FIFO. An error isalso logged for framing, that is, absence of a Stop bit.
In these cases, the suspect character isin the Receive Data FIFO and the appropriate status byteis
placed in the Status FIFO.

When aline-break condition is recognized (zero data with zero parity, and no Stop bit), one NULL
(0Q) character isloaded into the Receive FIFO, and abreak status is recorded in the Status FIFO.
Note that if odd parity is set and the bits received are all zeroes, it is marked as both a break
character and a parity error. Generally when a break character is received, pre-set parity error can
be ignored. No further FIFO entries are made until normal-character reception is resumed, for
example, a Start bit isfound. The line must go high and then back to low for thisto occur.

Multiple errorsin 1 byte are possible because the CD1865 eval uates the characters bit-by-bit as it
receives them. For example, a parity error is detected and flagged before the CD 1865 recognizes
that a framing error has occurred. Parity plus framing or parity plus break error can occur, but
framing plus a break error cannot occur because, if a character isreceived with every bit equal to a
‘0’, itismarked as abreak character. If somebitsarea‘1’, but the Stop bit is missing, for example,
a'0, itismarked as aframing error. Thus, any one character cannot have both framing and break
errors.

The length of the Stop hit is not checked by CD1865. Any Stop bit long enough to be sampled in
mid-bittimeasa‘l isinterpreted as avalid Stop bit. In addition to al of the other errors, if an
overrun occurs, the Overrun Error bit is set along with other error bits.

Types of Exceptions

Special Character Recognition

‘Special Character Recognition’ is a feature found only on the CD1865 and other Intel data
communications controllers. The on-chip processor compares every good character received with
user-defined special characters stored in registers on the device. Both single-character and two-
character sequence recognition is possible. This capability has several applications, including In-
Band Flow Control. Special-character matches are reported to the host by a Receive Exception
Service Request.

Four Special Character registers are provided per channel, allowing received charactersto be
compared to as many as four special characters. However, these four registers are shared between
Receive Special Character Detection and the Send Specia Character Command, so some planning
isrequired for using these characters.

The full set of features and options available as part of Special Character Recognition allows for

Xon/Xoff flow-control to be implemented transparently to the host, and at the same time, detect
either of two other special charactersin the data stream and alert the host of their arrival.

Datasheet

intel.

Note:

7.1.9

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

The user may individually enable any CD1865 channel to recognize special characters. There are
Six bits used to control the various recognition and flow-control modes.

The following four registers are used to control character recognition:

Bit Name Register Function
SCDE COR3 Egﬁi)rlglstge\:ﬂtzﬁﬂ.on of special characters. Must be set for In-Band Flow
RXSC Enable_s generation of service requests. Cannot be overridden by
other bits. Does not need to be set for In-Band Flow Control to work.
XonCH COR3 Controls single- versus double-character matching.
XoffCH COR3 Controls single- versus double-character matching.

The following table shows the effects of XonCH and X offCH:

XonCH XoffCH Characters matched
0 0 Match on: any of SCHR1-4
0 1 Match on: SCHR1 or SCHR3 or (SCHR2 and SCHR4)
1 0 Match on: (SCHR1 and SCHR3) or SCHR2 or SCHR4
1 1 Match on: (SCHR1 and SCHR3) or (SCHR2 and SCHR4)

The two-character pairs can share acommon first character; however, the same character must be
programmed in both SCHR1 and SCHR2.

Single- versus double-character recognition is controlled by XonCH and XoffCH. If single-
character compareis enabled, the CD1865 compares datain the data stream against the four special
characters stored in the Special Character registers (SCHR1-4). If fewer than four specia
characters are required, the unused Special Character register(s) should be disabled by duplicating
the pattern to be matched in the unneeded register. When reporting a special character, the CD1865
always reports the lowest-number Special Character register that matches.

To set up Special Character Recognition, first set the characters to be matched in registers SCHR1-
4, then set XonCH and Xoff CH according to the length of match wanted. Set the SCDE bit, and
lastly enable service requests by setting RxSC.

Special characters are reported to the host by placing the appropriate statusword in the Status FIFO
and the recognized special character in the Receive Data FIFO. In the case of atwo-character
sequence, only the second character is stored in the Receive FIFO. Thisis because there is room
only for one character and preserving both is not needed as these characters are user-defined.

Flow-Control Characters

Automatic In-Band Flow Control of the CD1865 transmitter is a subset of the Special Character
Recognition capability, so to understand both these features isimportant. Refer to Section 7.2 on
page 68 for transmitter operation. Flow-control characters and operation are programmable on a
per-channel basis. Thisisimportant to operating systems that allow users to configure their own
terminal settings independently.

63

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

64

Because the CD1865 performs flow-control functions before the data is passed to the host, the
response time required of the host to avoid data overrun is greatly reduced. Additionally, the flow-
control characters can be stripped from the data stream, relieving the host from processing them.

To use automatic flow-control, the Special Character Detection (SCDE) must be enabled by bit 4 of
Channel Option register 3 (COR3). This causes all error-free received data to be compared for a
match with the Special Character registers (SCHR1-4). In addition, flow-control must be enabled
by Transmit In-Band Enable (TxIBE, bit 6) of COR2. This causes the special charactersto be
interpreted as flow-control characters. For single-character flow-control sequences, SCHR1 is used
as Xon and SCHR2 as Xoff. SCHR34 are available for use as normal special-detect characters. If
two-character sequences are enabled by Xoff CH and XonCH (bits 6 and 7) of COR3, SCHR1 and
SCHR3 form the Xon sequence, and SCHR2 and SCHR4 form the X off sequence.

If flow-control characters are passed to the host, they are marked as special characters1 or 2 in the
Receive Channel Statusregister (RCSR). If atwo-character sequence is detected, it is compressed
to the second character and a status indicating a match of the first character is set. A valid two-
character sequence requires that both characters be received without error; if an error occurs on the
second character the first character is treated as a normal character, and this does not affect non-
flow control special character detection.

Datasheet

intel.

7.19.1

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Bits affecting flow control are summarized bel ow.

Bit Name Register Function
SCDE COR3 Enables Special Character Recognition.
TxIBE COR2 Enables Automatic Transmitter Flow-Control.
FCT COR3 Sets Transparency mode of flow-control.
XonCH XoffCH Xon Xoff
0 0 SCHR1 SCHR2
0 1 SCHR1 (SCHR2 and SCHR4)
1 0 (SCHR1 and SCHR3) SCHR2
1 1 (SCHR1 and SCHR3) (SCHR3 and SCHR4)

The FCT bit controls whether flow-control characters are passed on to the host. It has meaning only
when In-Band flow control is enabled, that is, TxIBE is set. When the CD 1865 receives a flow-
control character or character sequence and FCT isa ‘0’ it starts or stops the transmitter, as
required, and passes the character onto the host as a Receive Exception. Since there is a one-to-one
correspondence between the Status and Receive FIFO, the flow-control character detected is stored
in the Receive FIFO, and a status byte indicating special-character detect is stored in the Status
FIFO. If FCT isa‘'0’, RxSC must be set to enable service requests to be issued to the host.
Otherwise, flow-control characters cannot be passed as Receive Exceptions and is instead passed
as Good Data.

If the FCT bitisa'l’, the CD1865 still starts or stops the transmitter, as required, but the
character(s) are discarded, and no exception is posted. In either case, the flow-control status of the
transmitter (on or off) is maintained by the CD1865 in the Channel Control Status register (CCSR).

The FCT bit makes it possible to support ‘escaping’ of flow-control characters. Some systems
follow a convention where two identical flow-control characters in arow indicates that flow
control is not to be performed, but rather one flow-control character isto be kept in the normal
received-data stream, and the other ‘escape’ character isto be discarded. If the CD1865isin such a
system, set the FCT hitto a‘0’, allowing flow-control characters to pass onto the host. When the
host detects two flow-control charactersin arow, it simply restores the proper flow-control state of
the channel and discards one of the characters. However, for most systemsthe FCT bit can be set to
a‘l’, reducing loading on the host.

No New Data Received Time-Out

It is sometimes useful for the host to sense that ‘ no data has arrived lately’, when managing
relatively large 1/0 buffers. This event is used to flush the buffer up to the host for processing. One
of the receive timer options, No New Data Time-out (NNDT), generates a service request for the
first Receive Data Time-out following the transfer of all data from the channel to the host. This
service request is a Receive Exception sub-type, and can be enabled or disabled by controlling the
NNDT bhit in the . Refer to Figure 23 on page 67 for the timer logic.

Thetimer isstarted only on dataarrival. If the CD1865 processor determinesthat the Receive FIFO
is empty, the timer has expired, and there is a previous receipt of Good Data (and the timer feature
is enabled), a Receive Exception occurs with a status indicating that atime-out has occurred.

If the last Receive Exception Service Request was triggered by atime-out (to avoid ‘stale’ data) the

No New Data Time-out Service Request occursimmediately after the Data Transfer Service
Request completes. If the last service request was triggered by reaching the threshold, the timer

65

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

66

still has to expire so that some time passes before the No New Data Service Request occurs.
Likewise, if the last service request was triggered by some other error, such as parity, the timer still
has to expire so that some time passes before the No New Data Service Request occurs.

The No New Data function should not be confused with the time-out that occurs when thereis
Good Datain the FIFO but the threshold has not been reached and the timer expires. Thiseventisa
Receive Good Data Service Request, and not a Receive Exception event. Timing-out to transfer
Good Data before it becomes ‘stal€’ is standard, and it cannot be turned off by the user.

Datasheet

In o Intelligent Eight-Channel Communications Controller — CD1865

Figure 23. No New Data Timer Logic

...FROM OTHER
BACKGROUND
PROCESSING...

BACKGROUND SCANNING
DETECTS NEW CHARACTER
ARRIVED

!

PUT CHARACTER IN FIFO;
RELOAD TIMER

RESUME BACKGROUND
SCANNING LOORP...

POST RECEIVE GOOD
DATA SERVICE REQUEST

NO NEW DATA
TIMEOUT FEATURE
ENABLED
?

NNDT
INTERNAL FLAG
'"ARMED’
?

CLEAR NNDT
INTERNAL FLAG

Y

POST RECEIVE EXCEPTION
SERVICE REQUEST

RESUME BACKGROUND
SCANNING LOORP...

Datasheet 67

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.1.10

7.2

7.2.1

68

Programming Notes

If aspecia condition (for example, framing or a parity error) occurred on a specia character, the
CD1865 does not interpret this character as matched. Flow-control characters that are processed
and discarded because FCT is set never cause an overrun.

Special Character Recognition only occurs on characters that have no other problems or errors.
There is one case where the CD1865 does not find a special character even though the character
has been correctly received. If agood character arrives as the ninth character (for example, the
FIFO isfull), it staysin aHolding register. If another character arrives, the good character in the
Holding register has its status marked as ‘overflow’, indicating that it is the last good character
received; however, it is not recognized as a special character.

There are two cases where the CD1865 might not detect a two-character sequence. If the first
character has been found, but no other character has been received for along period of time and the
Receive Time-out event occurs, no match is found because the first character is flushed up to the
host. If special-character detection is disabled by clearing SCDE just when the CD1865 has
received the first two-character special-character sequence, but has not received the second
character yet, the first character islost.

Transmitter Operation

Basic Operation

Refer to Figure 24 on page 69 for a diagram of transmitter operation. Upon power-on reset, all
transmitters are disabled with their Transmit Output held in the ‘Mark’ or alogic ‘1’ condition.
Other channel parameters are undefined. The minimum configuration of achannel for transmission
consists of specifying the bit rate, parity, and number of Stop bits. In-band and Out-of-Band Flow
Control should also be set as required. Next, set either (or both) of the service request enable bits.
Then issue the Transmit Enable Command and either of two service request enable bits. For normal
operation, set the TXRDY hit. This causes a service request to be issued when the FIFO is empty.
Since on power-up the FIFO is empty, a service request isreceived (lessthan 1 ms.), and at that
time data can be transferred to the FIFO. Data can not be transferred to the FIFO as part of channel
initialization; instead one hasto be in the service-request routine to do this. Refer to the Section 5.3
for details.

Once the channel isinitialized and serviced, and a character is written into the Transmit FIFO, the
transmitter startsto transmit by first sending the Start bit (space or alogic ‘0') followed by the data
character according to predefined character length, least significant bit first. An optional parity bit
(none, odd, even, or forced) is appended followed by the final Stop bit (alogic ‘1’ or a‘Mark’).
The length of the Stop bit can be one, one-and-a-half, two, or two-and-a-half bit-times long.

The transmitter continues sending characters one after the other until the Transmit FIFO is empty.
When the Transmit FIFO is empty and the last character is sent, the transmitter stops transmission
and holds the TxD Output in the ‘Mark’ (1) condition. Transmission resumes another character is
inthe FIFO.

In some cases it must be determined if the channel is completely done transmitting the last bit of
the last character — for instance, before changing the bit rate. In such a case, the service request is
to be issued only when the last character is sent, rather than when the FIFO is empty. In this case,
instead of setting the TXRDY bit, set the TxMpty bit. This causes a service request to be issued
only when the transmitter is completely empty.

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

For details on transmitter flow-control operation, refer to the Section 7.3 on page 72.

Figure 24. Transmitter Operation

TRANSMITTER
FIFO
BACKGROUND CODE:
FIFO-TO-H.R. TRANSFER, FLOW
CONTROL, OTHER FEATURES
(POLLING LOOP) /
L FULL /
TRANSMITTER HOLDING REGISTER EMPTY
BIT
FOREGROUND CODE:
BIT DISASSEMBLY,
— H.R.-TO-S.R. TRANSFER

TRANMSITTER SHIFT REGISTER

(INTERRUPT-DRIVEN) RTS CcTS

ouT IN

71.2.2

7.2.3

Datasheet

FIFO Operation

An 8-byte FIFO is provided for each transmit channel. In addition to the 8-byte FIFO, the CD 1865
also contains a Transmit Holding register and the Transmit Shift register for each channel.
However, when servicing a Transmit Service Request, only up to eight characters can be written
into the Transmit Data register (TDR) consecutively.

Transmit Service Requests

Generating a Transmit Service Request depends on control bitsin the Enable register (). Setting the
TxRdy bit of the specifiesthat a Transmit Service Request be generated when the FIFO is empty.
When this condition occurs, thereis still one character in the Transmit Hol ding register and another
character in the Transmit Shift register. The host CPU, therefore, has up to two-character times to
respond before the transmitter output goesinto the idle (Mark) condition.

Setting the TxMpty bit instead of the TxRdy bit of the specifies that a Transmit Service Request be
generated only when the FIFO, the Transmit Holding register, and the Transmit Shift register are
empty. When this condition occurs, it meansthat all characters are completely transmitted and the
channel can now be re-configured. It is recommended that one of the two bits be set as needed, but
do not set both bits at the same time.

End of a service request must be signalled to the CD1865 by writing to the End Of register ().

69

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

71.2.4

7.2.5

7.2.6

70

Special Transmitter Commands

The CD1865 is capable of sending specia characters preemptively (bypassing the FIFO): sending
break characters and inserting delays or pauses either between characters or to lengthen a break.
There are two basic mechanisms the CD1865 uses for these * Send Special Character’ and
‘Embedded Transmit Command’ functions.

Special Character Transmission by Send
Special Character Command

Selected special characters, or two-character sequences, may be transmitted preemptively by
setting the appropriate bits in the Channel Command register (CCR). The Send Specia Character
(SEND SP CH) hit of the CCR, when set, initiates the Send Special Character Command. SSPCO-
2 bits of the CCR then specify which character or two-character sequence is used. The choice of a
single- or two-character sequence is determined by the XonCH and XoffCH bits of COR3.

When a Send Specia Character Command is given, the CD1865 inserts the special character(s)
into the data stream immediately following the current character in the Transmit Holding register.
Thus, it is ensured that the special character begins transmitting within two-character times after
the command isissued. The Send Special Character Command overrides all other flow-control
modes, including the state of TXEN and CTS*. Generally thisisthe preferred case. However,
sample CTS* or CD* in some applicationsto determineif it is okay to send a character before
invoking the Send Special Character Command.

The CCR isreset by the CD1865 as an acknowledgment of the command. A new command must
not be issued if the CCR contents are hon-zero. A send special character command is recognized
and cleared within 125 us (at 15 MHz, proportionally longer at lower clock speeds), unless a break
isbeing sent. If abreak is being sent, the special character is not sent until after the break time is
complete.

Embedded Transmit Commands

The CD1865 may be enabled to recognize certain ‘escape’ sequences as commands embedded in
the Transmit Data Stream. These commands are issued to introduce a time delay between
characters, to insert an idle period during the transmission, or to send a break on the line.

These capabilities are enabled on a per-channel basis by setting the Embedded Transmit Command
(ETC) bit in the Channel Option register 2 (COR2). The ‘null’ (00) character is used asthe
controlling character to initiate the special action. To preserve data transparency, two mechanisms
are provided to allow the null character to be sent as data. If the host must transmit a null character
as data, either the ETC mode may be disabled, or the null character may be preceded by anull, that
is, ‘00 00" causes one-null character to be sent. If the ETC bit is not set, the ‘00" character has no
effect, and it may be sent as ordinary data. ETC mode may be enabled or disabled ‘ on-the-fly’.

The CD1865 usesthe Transmit Timer to generate time delays between charactersin the output data
stream. It is also used to extend the duration of aline-break transmit condition when the delay is
inserted between the ‘ Start Break’ and ‘ Stop Break’ embedded-transmit commands. All of the
timers count ticks are determined by the Prescaler Counter. The two eight-bit Prescaler Period
registers (PPRH and PPRL) determine the real-time length of atick. A tick isthe period of the
CD1865 System Clock Input (CLK) multiplied by the Period registers’ contents.

Datasheet

intel.

1.2.7

7.2.8

7.2.9

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Sending Breaks

Line breaks may be sent by embedding the following sequences in the data stream (all values are
givenin Hex):

0081 Send Break: Enter line-break condition for at least one character time. Theline entersthe
break condition and stay there until one of the following conditionsis met:

1. Another character needs to be sent.

2. If thelnsert Delay Special Character Sequence immediately follows the Send Break Sequence,
the duration of the break transmission is extended by the amount of the programmed delay.
Thelnsert Delay Sequenceis: 00 82 xx. Thisinsertsadelay of ‘xx’ (interpreted as an unsigned
binary number) times the programmed timer ‘tick’ set by the Prescaler Period registers.
Multiple insert delay commands can be executed consecutively by the CD1865 to allow delays
of arbitrarily long length. If ‘xx’ isazero, no delay isinserted.

3. The Stop Break Sequence ‘00 83’ is encountered next. This sequenceis optional, and existsto
provide away to terminate a break without actually sending another character. If another
character is being sent anyway, no Stop Break is required.

If there is no more data to be sent, the TxD pin remainsin the state it was left in by the last
character. Since the Stop bitisalwaysa‘l’, thelineisleft in the idle state after any character,
except for the break character. The break character leavesthe lineinthe ‘0" state until more data
needs to be sent. Long breaks can be sent by simply sending one break and then waiting. To
terminate the break, send the Stop Break Sequence or send ancther character.

Sending long breaks has precedence over the Send Special Character Command, for example, the
time delay duration must pass before the special character is sent.

Sending Inter-Character Delays

In some applicationsit is desirable to pause between characters. For example, certain types of
electro-mechanical tel etype equipment cannot handle characters continuoudly at their specified bit
rate. To accommodate this, the CD1865 allows insertion of a delay between characters.

The user embeds an escape sequence into the Output Data Stream to generate delays between
characters. When the CD1865 encounters the Insert Delay Escape Sequence, it sets the Transmit
Timer to the value contained in the Escape Sequence. When the timer expires, the CD1865 loads
the next character into the Transmit Shift register and resumes output (unless the next character
begins another Escape Sequence). The Escape Sequence for an inserted delay consists of three
characters: ‘00’, ‘82, and ‘tt’. Thetime-out value ‘tt’ is expressed in timer ticks.

Summary of Special Transmitter Commands

The ETC bit in COR2 must be set to enable the following functions:

Char. Sequence Effect

00 00 Send one-null character

71

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.3

7.3.1

72

Char. Sequence Effect
00 81h Send one-character time of line break
00 82h xxh Delay fo_r ‘)_(x’ prescale_r t!m(? ticks (for example,
Transmit Timer Value is ‘xx’)
00 83h Stop break
Flow Control

Variationsin response times and system data transfer rates between systems communi cating across
asynchronous interfaces give rise to a need to control the flow of data between them. Systems
typically are implemented with a receive buffer for temporary storage of data. When this buffer is
nearly full, the receiving computer ‘flow-controls' the remote transmitter. When, after processing
the existing data, more buffer space is available for the receive process, the receiving computer
signals the remote to resume transmission.

Flow control isimplemented in one of two ways — ‘out-of-band’ or ‘in-band’ signaling. Out-of-
band signaling is a hardware-based mechanism, performed by extrawires such asthe RTS/ICTS
and DSR/DTR pairs. It has the advantage of compl ete independence from the data stream.
However, it is not always possible to provide all of the wires necessary to support Out-of-Band
Flow Control. Also standards for implementing Out-of-Band Flow Control vary widely.

In-Band Flow Control works by inserting special flow-control charactersinto the stream of data
being sent. It has the advantage that only the data circuit is required, thus only two wires are
needed. The disadvantage of In-Band Flow Control isthat the two communicating computers must
perform additional functions, specifically, they must monitor the data stream for flow-control
characters and take the appropriate action. This can be quite burdensome because the host
computer that receives aflow-control command must recognize this event quickly and respondin a
timely manner to avoid overrun at the remote receiver.

Although there are advantages and disadvantages to each system, in general thetrend is toward In-
Band Flow Control. Thisis becauseit is more useful than Out-of-Band Flow Control over awider
range of applications, such as communication by modems.

The CD1865 provides significant performance advantages over conventional solutions during both
the receive processing of and the transmission of flow-control characters. It does this by handling
almost all flow control automatically, without host intervention. It also providestools to make host
intervention, when required, much easier. Because the CD1865 performs flow-control functions
automatically, before the datais passed to the host, the response time required of the host is
substantially reduced. The possibility of data overrun is also reduced. Additionaly, the flow-
control characters themselves can be stripped from the data stream, relieving the host from
processing them. The flow-control status of the transmitter is always available to the Host as a bit
in the Channel Control Status register (CCSR).

Receiver Flow Control

The CD1865 provides both In-Band (Xon/Xoff) and Out-of-Band Flow Control functions for
ensuring that the receiver does not overflow. In-Band Flow Control is semi-automatic and helpsthe
host manage its buffer size. Out-of-Band Flow Control is fully automatic and can be used to
prevent the CD1865 Receive FIFO from overflowing. Figure 25 on page 73 diagrams the receiver
flow-control logic.

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

When the CD1865 receiver is too busy, the transmitter can be used to send Xoff/Xon to the remote
device. This Receiver Software (In-Band) Flow Control is covered in Section 7.3.3 on page 74.

The CD1865 transmitter can be controlled by the remote device. This Transmitter Software (In-
Band) Flow Control is covered in Section 7.3.6 on page 76.

The current flow-control status is aways available to the host. It is stored in the Channel Control
Status register (CCSR). Two bits, Receive Flow-on and Receive Flow-off, show whether the last
flow-control command sent by the CD1865 was on or off. Aslong as the receiver is enabled, the
CD1865 continuesto receive any data sent regardless of whether it has requested the remote to shut
off.

Figure 25. Receiver Flow-Control Logic

RECEIVER FIFO, STATUS FIFO

& /BACKGROUND CODE: \
/ H.R.-TO-FIFO TRANSFER, OTHER

FEATURES. FLOW CONTROL:

MATCH SPECIAL CHARACTER?

DSR* ASSERTED?
DTR* THRESHOLD REACHED? |<

K (POLLING LOOP) /

FULL/
EMPTY
RECEIVER HOLDING REGISTER |«—— BIT
[FOREGROUND CODE:
BIT ASSEMBLY,
S.R.-TO-H.R. TRANSFER [] []
(INTERRUPT-DRIVEN)
RECEIVER SHIFT REGISTER DTR DSR

ouT IN

7.3.2

Datasheet

Receiver Hardware (Out-of-Band) Flow Control

Out-of-Band Flow Control uses the Modem Handshake signal (DTR*) to control the flow of data.
Whenever the Receive FIFO reaches a user-defined threshold, DTR* is negated. This event can be
used to signal the remote to stop sending characters. The threshold is set by four bitsin the Modem
Control Option register 1, and can be any level from oneto eight, or disabled. The DTR* pinisaso
negated whenever DTR* modeis set and the channel is disabled or reset. If DTR* mode is not set,
the DTR* pinis not changed by the CD1865, and remains at whatever value the host setsit to.

Whileit is possible to set the DTR* threshold lower than the service request threshold, the part
operates as though the DTR* threshold was the same as the service request threshold. If the DTR*
threshold is set lower, it isignored, and DTR* negates when the service request threshold is
reached. If required, set the DTR* thresholdtoa‘1’, and then it ‘tracks the other threshold
automatically.

73

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.3.3

74

The receiver monitors the state of DSR* (if enabled) and ignores data on the Receive Data pin if
DSR* is negated. Thisfeature is controlled by the DsrAE bit, bit O of Channel Option register 2
(COR2).

Receiver Software (In-Band) Flow Control

Host receive buffers often cannot keep pace with data being received. The CD1865 transmitter can
be used to send flow-control characters to the remote device. This avoids over-flowing the receive
buffersin the host. However, transmitting flow-control charactersis an additional complication and
source of delay when using conventional devices. As the host’s receive buffer becomes full, the
transmit process must be flagged to insert a flow-control character (or sequence) in the Transmit
Data Stream. Any data already in the Transmit FIFO is transmitted ahead of the flow-control
character, increasing the response time at the remote end.

With the CD1865, In-Band Flow Control of the remote system is semi-automatic; two commands
(Send Xon, Send Xoff) can be issued by the host whenever the host wants to flow-control the
remote. These special commands make host programming and buffer management easier because
it allows the flow-control character(s) to be sent as the next character, regardless of the contents of
the Transmit FIFO or host transmit buffers.

Flow-control characters are transmitted by the send special character command in the Channel
Control register (CCR). The lower-three bits in the command determine which of the four-special
characters are to be sent. If two-character flow control sequences are enabled, requesting either
SCHRL1 or SCHR2 causes the appropriate two-character sequence to be transmitted. Refer to
Section 7.2.5 on page 70 for Special Character Definition details. Special characters are
transmitted regardless of the state of transmit enable or transmit flow control. Transmitting flow-
control characters can be handled independently of the current state of the transmit channel. In
sending special characters, the CD1865 bypasses any data already in the Transmit FIFO, thereby
minimizing delay in transmitting flow-control characters. The maximum delay is two-character
times. However, if abreak is currently being transmitted, the CD1865 waits for the break
transmission to terminate before the special character istransmitted, regardless of the length of the
break.

The CD1865 keeps a copy of the current state of the receive flow in the CCSR. Two bitsare used to
indicate the current state of the channel regarding flow control: RxFloff and RxFlon. RxFloff and
RxFlon are meaningful only when the CD1865 is flow-controlling the remote. Whenever an X off
istransmitted, RxFlon is cleared and RxFloff is set. When a subsequent Xon is transmitted,
RxFloff is cleared and RxFlon is set. When data is received from the remote, RxFlon is cleared.

The'00' state is provided as an aid to the programmer in determining whether there might be a
problem in acommunicationslink. If RxFlon remains set during normal operation, it could indicate
that the remote did not correctly receive the last Xon.

If flow-control characters are sent by the host by embedding them in the Transmit FIFO rather than
using the Send Special Character function, the CD1865 flow-control logic does not sense them,
and the CCSR is not affected.

The table below summarizes the meaning of RxFloff and RxFlon.

Datasheet

7.3.4

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

RxFloff RxFlon Meaning
1 1 Illegal mode.
Xoff is last flow-control character sent
1 0
(flow off).
Xon is last flow-control character sent
0 1
(flow on).
0 0 Flow is on, data has been received.

Transmitter Flow Control

The CD1865 provides both automatic In-Band (Xon/Xoff) and Out-of-Band Flow Control
functions. In-Band Flow Control recognizes special characters or character sequences for Xon and
Xoff control embedded in the data stream. Out-of-Band Flow Control uses the modem handshake
signals, RTS/CTS, to control the flow of data. Both types of flow control are implemented between
the Transmit FIFO and the Transmit Holding register, not between the Transmit Holding register
and the Transmit Shift register. Figure 26 on page 76 diagrams the transmitter flow-control logic.

All automatic flow-control functions are controlled by bitsin Channel Option register 2 (COR2),
except DTR threshold, which is controlled by Modem Change Option register 1 (MCORL1).
Channel enable and flow-control statusis stored in the Channel Control Status register (CCSR). A
TxEn bit shows the enabled status of the channel’s transmitter. Two bits, TxFloff and TxFlon, are
used to indicate the current state of the channels’ flow contral.

Once the Automatic Flow-Control Modes are invoked by the host, all actions are transparent to the
host. If receipt of flow-control characters by the host is not required, the Flow-Control
Transparency bit of COR3 may be set to not pass received flow-control characters onto the host. If
TXIBE is set, the CD1865 implements the flow-control function on the transmitter regardless of the
FCT mode. The host can review the status of the channel by reading the Channel Control Status
register.

If flow-control status is needed by the host, the SCDE and RxSC Control bits must be set and the
FCT bit must not be set. A special character detect status and the special character is presented to
the host by a Receive Exception Service Request. If the host wishes to manually flow-control the
transmitter, it can do so by using the TxEn bit, which stops transmission after the current character
compl etes.

75

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Figure 26. Transmitter Flow-Control Logic

TRANSMITTER
FIFO
BACKGROUND CODE: \
FIFO-TO-H.R. TRANSFER, FLOW
CONTROL, OTHER FEATURES
(POLLING LOOP) /
FULL/
TRANSMITTER HOLDING REGISTER EMPTY
BIT FOREGROUND CODE:
BIT DISASSEMBLY,
— H.R.-TO-S.R. TRANSFER
TRANMSITTER SHIFT REGISTER (INTERRUPT-DRIVEN) RTS CTS
ouT IN

7.3.5

7.3.6

76

Transmitter Hardware (Out-of-Band) Flow Control

Transmit Out-of-Band Flow Control is performed automatically by the CD1865 by the CTS* pin,
if the CTS Auto Enable (CtsAE) mode is enabled in bit 1 of COR2. In this mode, before a character
from the FIFO istransmitted, the CTS* pinistested, and, if inactive, transmission isdelayed. Since
flow control isimplemented between the FIFO and the Transmit Holding register, when CTS* is
negated, it is possible to get both the current character being sent and the character in the Transmit
Holding register.

However, the Send Special Character Command (that is, Xon and Xoff) overrides CTS* inactive.
Thisis generally preferred; however, in some applications sample CTS* or CD* before sending a
specia character.

To compl ete the handshake with aremote device, an RTS Automatic Output (RtsA O, bit 2) modeis
also provided. This causes the RTS pin to be asserted throughout any data transmission: normal,
break, and special characters. The RTS pin is activated whenever there is datain the FIFO and
transmitter registers. It is held active until after the last Stop bit of the last character is transmitted.

Transmitter Software (In-Band) Flow Control

The CD1865 transmitter can be programmed to respond automatically to flow-control characters
received by the receiver. This feature requires no host assistance and substantially reduces host
processing requirements. If this Automatic mode is enabled, when the remote unit transmits an
Xoff character to the CD1865 (to prompt the CD1865 to suspend transmission), the CD1865
terminates the transmission. The CD1865 may require approximately 500 microseconds (~2
character-times at 38.4 kbps) after receipt of the Stop bit to recognize that the character it has

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

received is a flow-control character and set itsinternal flag to stop transmission. Transmission
actually stops as soon as the charactersin the Transmit Shift register and Transmit Holding register
are shifted out.

To enable In-Band Flow Control, two bits must be set. First, the Special Character Detection
(SCDE) must be enabled by bit 4 of Channel Option register 3 (COR3). This causes al error-free
received data to be compared for amatch with the Special Character registers (SCHR1-4). Second,
flow control isenabled by Transmit In-Band Enable (TxIBE, bit 6) of COR2, the special characters
are interpreted as flow-control characters.

Different flow-control protocols use either single- or two-character sequencesfor the Xon and X off
functions. For single-character flow-control sequences SCHR1 is used as Xon, SCHR2 as Xoff,
and SCHR3-4 as normal special detect characters. If two-character sequences are enabled, by
XoffCH and XonCH (bits 6 and 7) of COR3, SCHR1 and SCHR3 form the X on sequence and
SCHR2 and SCHR4 form the X off sequence.

Many operating systems allow users to define their own terminal’s flow-control settings
independently. The CD1865 allows flow-control characters to be programmed on a per-channel
basis.

The FCT hit controls whether flow-control characters are passed on to the host. When the CD1865
receives a flow-control character or character sequence and FCT isa ‘0, it starts or stopsthe
transmitter as required, and passes the character on to the host as a Receive Exception Service
Request. Since thereis aone-to-one correspondence between the Status FIFO and the Receive Data
FIFO, the flow-control character detected is stored in the Receive Data FIFO, and a status byte,
indicating special character detect, is stored in the Status FIFO.

If the FCT bitisa‘l’, the CD1865 still starts or stops the transmitter as required, but the character
isdiscarded, and no exception is posted. In either case, the flow-control status of the transmitter (on
or off) is maintained by the CD1865 in the Channel Control Status register (CCSR).

If flow-control characters are passed to the host, they are marked as special characters 1 or 2 in the
Receive Channel Status register (RCSR). If atwo-character sequence is detected, it is compressed
to the second character and a status indicating a match of the first character is set. A valid two-
character sequence requires that both characters be received without error. If an error occurs on the
second character, the first character istreated as anormal character, and the second character is
reported as an error by a Receive Exception Service Request.

Bits affecting flow control are summarized in the table below:

Bit Name Register Function
SCDE COR3 Enables Special Character Recognition.
TXIBE COR2 Enables Automatic-transmitter Flow Control.
FCT COR3 Sets Transparency mode of flow control.
IXM COR2 Sets implied Xon mode
XonCH XoffCH Xon Xoff
0 0 SCHR1 SCHR2
0 1 SCHR1 (SCHR2 and SCHR4)
1 0 (SCHR1 and SCHR3) SCHR2
1 1 (SCHR1 and SCHR3) (SCHR2 and SCHR4)

77

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.4

78

The remote device can signal the CD1865 to resume transmission in one of two ways depending on
the setting of the Implied Xon mode (IXM) option bit COR2. When the IXM bit is set, the CD1865
resumes transmission upon receipt of any character, for example, each character isan implied Xon.
In Implied Xon mode it is assumed that if the remote is capable of transmitting data, it isableto
receive aswell. If acharacter istreated as an implied Xon, no specia statusisrecorded in the
RCSR, and the TxFlon bit isnot set in the CCSR. An implied Xon character is not stripped if flow-
control transparency is enabled.

When the IXM bit is not set, the CD1865 only resumes transmission upon receipt of an Xon
character. In addition, the host may force a resumption of transmission by issuing a Transmit
Enable Command, which clears the TxFloff bit. The Xon and Xoff characters or character
seguences are equal in a Toggle mode. There is no special bit to enable this mode. The CD1865
detects this mode whenever the X on character equals the X off character, and it implements Toggle
mode automatically.

In Toggle mode, whenever the special character is received, the current state of flow control is
toggled. If flow control transparency is set, the character is dropped. If not in flow-control
transparency, the character is passed to the host. If it is a single character, the specia character
statusis‘1’ and the character is put in the Receive Data FIFO. In two-character sequence, the
second character is placed in the Receive Data FIFO along with special character ‘1’ in the Status
FIFO.

The TxFloff and TxFlon bitsindicate channel statuswhen the remote device isflow-controlling the
CD1865 transmitter. When the remote requests the CD1865 to stop transmission, the CD1865 sets
the TxFloff Status bit in the CCSR. If TxFloff is set, the last flow-control character received was a
flow-off. When the remote sends an explicit flow-on character, the CD1865 clears the TxFloff bit,
and set the TxFlon bit. (If flow is resumed because of implied Xon, TxFloff is cleared, but TxFlon
isnot set). When the CD1865 resumes transmission, the TxFlon bit is cleared. Transmit Flow
Status bitsis also cleared by enabling or disabling the transmitter or resetting the channel.

Thisis summarized in the table below:

TxFloff TxFlon Meaning
1 1 Illegal
1 0 Transmitter is flow-controlled off
0 1 Transmitter on, no data sent yet

Transmitter on, CD1865 has sent data, or implied Xon has
0 0 occurred. This is also the ‘normal’ state of these bits when flow
control is not being used

Modem Signals and General-Purpose I/O

Each channel of the CD1865 has four pins that can be used either as modem-control or general-
purpose input/output pins. The modem signal names assigned to these four pins have been chosen
to provide an easy reference for systems designers. In fact, they are all smply general purpose
inputs and outputs (if automatic Out-of-Band Flow Control is not used) that can be individually
controlled by the modem signal value register(s). Since they are general purpose, system designers
may choose to connect the pinsin any way that suits the application.

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

However, when the system software design chooses to make use of the automatic Out-of-Band
Flow Control with the pins, then the signal naming convention no longer holds true in some cases,
depending on whether the deviceisused as DCE or DTE. In this case, it is best to think of the pins
in terms of their actual uses within the CD1865 and connect them accordingly, without regard to
their names. The RTS* and CTS* pins are associated with the transmitter and the DTR* and DSR*
pins are associated with the receiver. The table below shows Intel’s recommended signal hook-up if
automatic, Out-of-Band Flow Control is required.

DCE DTE CD1865 Pins Out-of-Band Flow Control
CTS DTR Signal remote to transmit
RTS Not implemented in this direction
RTS RTS Request remote permission to transmit
CTS CTS Enable transmitter

For example, if the CD1865 is designed to be a DCE and automatic Out-of-Band Flow Control is
required, the pin labeled DTR should be connected to remote CTS input. If the CD1865 isto be
used asthe DTE side, then the CD1865 CTS output would be connected to the remote CTS input.

Note that if automatic Out-of-Band Flow Control isimplemented, the activity of DTR and DSR
pins do not implement the function assigned to those signal names by the signalling conventions of
the CCITT and other standards organization. These names would only apply to these pinsif they
are under program control and not under automatic CD1865 control. In fact, the DTR’ function, as
defined, enables the modem to go on- and off-line, depending on the state of the pin. If automatic
control is used, then DTR would go inactive when the receive FIFO reached the programmed
threshold thus causing the modem to drop the connection (carrier) to the remote, which would not
be the correct function. Refer to Section 7.3 for details on operation of modem pinsin flow-control
applications.

Modem Function
Control Pins
RTS* Request to Send (general-purpose output)
CTS* Clear to Send (general-purpose input)
" Data Terminal Ready (carrier detect/general-
DTR ;
purpose input/output)
DSR* Data Set Ready (general-purpose input)
CD* Carrier Detect (general-purpose input)

Modem pins are implemented as |/O ports accessible by either the CD1865 processor or the host.
The modem pins are not connected directly to the transmit or receive hardware. When a user
programs out-of-band modem functions to be active, the CD1865 processor reads from and writes
to these pins. Specifically, when RTS* and CTS* are being used for transmit flow control, the
CD1865 processor asserts RTS* and senses CTS*, as required. Likewise, when configured to do
s0, the Receive FIFO negates DTR* when full. The host should not be allowed to re-assert it
inadvertently. The host isnot ‘locked out’ of accessing these bits; care should be taken so that these
bits are not written to, causing the system to malfunction.

The user has direct control over the RTS* and DTR* Outputs and can sense the state of CTS*,
CD*, and DSR* Inputs through the Modem Signal Value register (MSVR). Since the host is
accessing these pins directly, thereis no delay in the host's ability to detect alevel change. DTR*
and CD* depend on the state of the DTRSEL input.

79

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

7.4.1

71.4.2

7.5

80

When the CD1865 is programmed to detect level changes and generate service requests when level
changes occur, it does so in firmware by reading the pins and comparing to a previously stored
value. Thisfunction is performed in the main timing loop of the firmware; the maximum time
required to detect alevel change under worst-case conditions is approximately 2 ms. When the
CD1865 is performing this function, the modem pins are periodically sampled rather than
continuously monitored; as such they have very little sensitivity to noise, which isdesirable in data
communication applications. However, in extremely noisy applications, re-read a modem line
which has caused aModem Signal Change Service Request to verify that it hasindeed changed and
is not merely malfunctioning. This eliminates even the slight possibility of anoise pulse causing
erratic operation.

When the CD1865 is monitoring modem pins to control transmit or receive functions, it does not
rely on the previously stored value, but checks the pins at the appropriate time. Thus, thereisvery
little delay in thisresponse. For example, before deciding to transmit another character, it examines
the CTS* pin at that time. (The CD1865 makes this decision when moving characters from the
FIFO to the Holding register, not from the Holding register to the Shift register.) Refer to

Section 7.3 on page 72 for flow-control details.

Note that the logical sense of the modem bitsisinverted; for example, writinga‘1’ to the MSVR
causes the output pin to go to nominal zero volts. Likewise, alow-voltage inputissensedasa‘l’.

Generating Service Requests with Modem Pins

The CD1865 can generate service requests when any one of the input pins changes state. Either or
both edges may be detected by setting bits in the two Modem Change Option registers (MCOR1
and MCOR?). For each pin, the user can individually enable on-to-off or off-to-on transition
detection of the inputs. When the CD1865 detects such atransition, it sets the corresponding bit in
the Modem Change register. If the corresponding bit in the channel’s set, the CD1865 assertsits *
output. The user must clear the Modem Change register during the service request service routine
before writing to the .

The CD1865 performs this task by reading the modem input signals and comparing the current
value with the value read in the last pass through the outer scanning loop. Because thisis the
lowest-priority event in the CD1865 scanning loop, changes may not be detected unless they are
severa hundred microseconds long. Modem Input pins can be used for purposes such as detecting
the closing of a switch. However, the relatively slow speed of response should be taken into
account when using Modem Input pins for this purpose. The CD1865 does not latch the Modem
input signals.

Using Modem Pins as General-Purpose I/O
Since the modem pins can be directly accessed by the host, they can be used as general-purpose |/O

pinsif they are not needed for flow control or modem interfacing. Simply read from and write to
them asany 1/O port.

Testing the CD1865 — Loopback Tests

The CD1865 performs abasic internal self-test whenever it isreset. Thistest provides areasonable
degree of confidence that the CD1865 is functioning satisfactorily. There are two additional tests
that can be performed by the user to further ensure complete functionality. These two test modes

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

are Local and Remote L oopback. Used together with diagnostic firmware in the host system, the
L oopback Modes provide very thorough test coverage of all CD1865 functional blocks: the
CD1865 processor, ROM, RAM, bus interface, transmitters/receivers, and random logic.

Local Loopback Mode

Local Loopback modeisa‘silent’ loopback, for example, data being sent by the transmitter is
internally connected to the receiver without reaching the external TxD pin. Generally, thisis
advantageous because it allows diagnostic software to operate without causing unwanted effects on
any remote device that may be connected to the serial line. During local loopback, the TxD pinisin
the ‘mark’ (alogic ‘1') state. If non-silent loopback is also needed, it can be easily implemented
externally with an AND gate or ajumper plug on the serial connector.

Local Loopback mode isinvoked by setting the LLM bit in the Channel Option register 2 (COR2)
and then issuing a channel command to tell the CD1865 that COR2 has changed. When in this
mode, the channels TxD Output isinternally looped back to the channel’s RxD Input. However, all
other channel parameters including modem pins continue to work independently and normally.
Receive special character recognition, overflow handling, and other options may be tested by using
the Local Loopback mode and transmitting the appropriate character sequences. As shownin
Figure 27 on page 82, the loopback connection is directly from the TxD signal to the RxD signal,
for example, al transmit and receive logic is tested except the actua 1/0 buffers.

Remote Loopback Mode

Remote Loopback mode is provided to support testing of devices connected to the serial lines.
Remote Loopback isinvoked by setting the RLM bit in the Channel Option register 2 (COR2).
When in this mode, the CD 1865 echoes the received data to the transmitter for transmission back to
the sender. The received data is not passed on to the host.

When in Remote Loopback mode, the transmitter continues to run as defined by its own Baud Rate
registers, not the values being used by the receiver. The CD1865 receives a complete character,
strips off Start, Stop, and Parity bits, and then re-transmits it with Parity, Length, and Stop bit
Output options as defined in COR1. Thus, it is possible to change baud rate. However, this can
result in receiver overflow. In general, when programming for Remote Loopback Operation, the
Transmit bit rate should be asfast or slightly faster than the expected receive rate to avoid possible
overrun and loss of data. The number of Stop bits should be set to aone, rather than one-and-a-half
or two, if the application permitsit. This ensures that the effective transmit rate is faster than the
receive rate.

As shown in Figure 27, Remote Loopback is done at the character level and not the bit level. The
Receive and Transmit FIFOs are not used in Remote L oopback. Characters are transferred directly
from the Receive Holding register to the Transmit Holding register. For a diagnostic mode that
tests the FIFOs, other logic is needed to be implemented by programming the host system to
transfer received characters from the Receive FIFO to the Transmit FIFO. This permits full testing
of FIFO thresholds, service request logic, special character operation, and so on.

81

n
CD1865 — Intelligent Eight-Channel Communications Controller Int6I®

Figure 27. Local and Remote Loopback Logic

J o

TRANSMIT SHIFT REGISTER \.—‘/ RECEIVE SHIFT REGISTER

TRANSMIT HOLDING REGISTER | LOCAL LOOPBACK SWITCH RECEIVE HOLDING REGISTER

REMOTE LOOPBACK SWITCH

TRANSMIT FIFO RECEIVE FIFO

82 Datasheet

intel.

8.0

Intelligent Eight-Channel Communications Controller — CD1865

Programming

8.1

Datasheet

Types of Registers

The CD1865 contains three types of registers:
¢ Global registers — registers not specific to a particular channel
¢ Indexed Indirect registers — special registers that are mapped to unique functions
* Channel registers — registers specific to each channel

Global Registers

Global registers contain information common to all channels. They are used primarily for passing
vectors and setting-up service request handling.

Indexed Indirect Registers

Indexed Indirect registers are special registersthat either point to the FIFOs or signal the end-of-
service reguest processing. The Indexed Indirect registers are used primarily to transfer datato and
from the serial channel FIFOs. Such transfers can be done only during a service request. When
service requests are being serviced by the host, a context-switching technique is used by the
CD1865 that reduces the number of cycles needed by the host to transfer data to and from the
CD1865. The CD1865 makes available to the host all the registers pertaining to the channel
requesting service by mapping them through to the Indexed Indirect register addresses. This
removes the burden, of keeping different addresses according to which channel is being accessed,
from the host.

FIFO information is channeled through either the Receive Data register, the Receive Character
Status register, or the Transmit Dataregister of the Indexed Indirect register set. Use of the Indexed
Indirect registersisvalid only during appropriate service requests; the Transmit Data register can
be accessed during Transmit Service Requests, but not during Receive or Modem Service
Requests. The Channel Accessregister’s (CAR) content is|eft unchanged from the value last set by
the user, but it is not used in a service request context. The CAR should not be modified during a
service request. During a service request, only access the channel that has caused the service
request to be issued (as defined by the Global Interrupting Channel register).

Channel Registers

Channel registers are used to store parameters specific to each channel, such as bit rates, special
character processing, and modem options. When not actively involved in a service request, each
channel can be accessed at any time, independently of the other channels. Channel registers can be
accessed by first writing the number of the channel to be accessed into the Channel Access register.
The channel number in the CAR is used by the CD1865 as part of the Channel register Address.

Individual CD1865 registers are addressed by a seven-bit address contained in Address Bus bits
A6-AQ. Addresshit A6 settoa'l’ selectsthe Global registers, and when set to a‘0’ selectsthe
Channel registers. When the CD1865 is not in a service request context, the active channel is
defined in the CAR. The contents of the CAR then become part of the Address Field (along with
AO0-A5) needed to access the Channel register file.

83

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

8.2

8.3

8.4

84

Off-Limit Registers

The CD1865 communicates to the host by shared access to its on-device RAM. Of the 128-byte
locations in the CD1865 address range, only 41 locations are defined as registers available to the
host. The rest are used by the CD1865 for internal variable storage. Users should not access these
registers sinceit can cause the CD1865 to malfunction.

Access Duty Cycle

The host access to the CD1865 appears to be a simple static read or write cycle, but the actual
access occurs by arbitrating for the local (on-device) bus and ‘stealing’ one-bus cycle. Thisis
completely hidden from the user in normal circumstances, and successive accesses to the CD1865
may be done ‘ back-to-back’ with no delay. However, if the host were to repetitively read from (or
write to) the CD1865 as fast as possible over many cycles, enough CD1865 internal bus cycles
would be ‘stolen’ that the CD1865 processor might not be able to keep pace with its processing.
This situation could only occur if the host was continuously testing a bit while waiting for it to
change state. If there is arequirement to do something similar, insert adelay in the host code so that
the net-duty cycle of accessesis less than ten percent. This limitation applies only when the
CD1865 is sending and receiving data on one or more channels. When initializing or re-
configuring a channel, these registers can be written to at afast pace.

Accessing FIFOs Versus Other Registers

The FIFO storage array is under the control of the CD1865 at all times. Thisis necessary to ensure
that the FIFO is available for the CD1865 processor to access whenever needed. During normal
operation, the CD1865 processor sets the FIFO pointers to the value required to transfer data,
regardless of the value placed in the Channel Access register (CAR) by the user. Therefore, the
user cannot access the FIFOs in this manner.

FIFOs can only be accessed in the context of an active Service Request. At thistime only the
CD1865 processor causes the FIFO pointersto be set to the appropriate value for the channel being
serviced. FIFOs are then accessed by the Indirect Indexed registers.

Initialization

The CD1865 initialization begins with a mandatory hardware reset applied through the active-low
RESET* Input. The system Clock (CLK) Input must be active during the hardware reset, and the
reset duration must be at least five clock periods. It is not necessary to synchronize RESET* Input
with CLK. Refer to Figure 28.

Immediately following the hardware reset, the CD1865 goes through a firmware initialization,
reaching an ldle mode within 500 ps. This can be verified by the host by reading the Global
Service Vector register and finding its contents to be FF Hex. Upon internal reset completion, the
user can then configure the CD1865 for the required channel functions.

A software reset can be performed by setting certain bits in the Channel Command register (CCR).

Setting bits7and 0toa ‘1’ resets all channels. Thisis done by forcing the CD1865 processor to
jump to the same power-up sequence that it uses upon hardware reset. Whether the reset is caused

Datasheet

In o Intelligent Eight-Channel Communications Controller — CD1865

by hardware or software, the CD1865 does not initialize every register and RAM location to a
defined value. The only sure state isthat all channels are inactive, no service requests are pending,
and the Global Interrupt Vector register is FF Hex.

Figure 28. Initialization

MASTER
CHIP (
RESET

INITIALIZATION)

After either a hardware reset by the RESET pin or a software reset
N by a CCR command, wait until the GSVR= xFF before proceeding
with chip initialization.

Y
When the CD1865 is ready, begin by loading the GSVR with the
LOAD GSVR WITH CHIP ID, . . .
chip ID if there are more than one CD1865 in the system. Load
GLOBAL | PILRS WITH VECTORS, AND . . ,) .
the Service Match registers with the vectors that will be used during
INITIALIZATION PRESCALE REGISTERS !))
service acknowledge cycles. Load the Prescale registers with the
+ value chosen for the basic time count for timer operations.
LOAD CARWITHA ‘0’ In preparation for channel initialization, load the CAR with a ‘0’ to
" access Channel Zero registers.
Y A
N for the CCR to contain a value of zero to ensure that the
CD1865 is not processing a previous change command for that
channel.
Y
T OAD CORL3 WITH Load the Channel Option registers with the values to enable the
CHARACTER -SETTINGS desired modes of operation and character parameters such as
AND OPERATION MODES parity, stop bits, and so on.

\

Inform the CD1865 that one or more Channel Option registers

ISSUE COR CHANGE have changed via the COR Change Command.
COMMAND IN CCR

Y

CHANNEL LOAD SCHR1-3, MSVR,

INITIALIZATION IMCOR1-2, TRANSMIT/RECEIVE Option registers for modem interrupt conditions; the MSVR with the
states of DTR/RTS as necessary and the baud rate constants for
v Transmit and Receive Baud Rate Generators. Set the appropriate

bits in the SRER register for the interrupt conditions desired.

INCREMENT CAR

If more channels, go back to the top of the loop.

Datasheet 85

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

8.5

8.6

8.7

86

Global Register Initialization

The user must initialize the CD 1865 by programming the following Global registers before starting
normal operations on the ports — Prescaler Period registers, the Global Interrupt Vector register,
and the three Service Match registers ().

Service Request Initialization

To prepare the CD1865 for service requests the following registers must be initialized:
* Global register (GVR)
* three Service Match registers ()
* Global Channel registers (GCR)

The Global Vector register consists of five bits of user-supplied information, and three bits of
CD1865—supplied service reguest group information. This concatenated vector supplied by the
CD1865 during a service-request-acknowledgment cycle directs the host to the proper service
request subroutine. The host writes the five MSBs into the GV R during initialization. These five
bits can be either a device ID number or an appropriate code for handling service request. In
multiple-cascaded CD1865 applications, these five bits must have a unique value for each CD1865
to identify which CD1865 is responding to a service request cycle.

Three registersin the Global register set — Modem Service Match register (), Transmit Service
Match register (), and Receive Service Match register () store the service request values for the
three types of service requests. These levels are used to match with the value that appears on the
address bus during a service-request-acknowledgment cycle. Since these levels are system
dependent, the user must initialize these registers with the proper values.

The following three registers provide the channel number of the channel requesting service —
GCR1, GCR2, and GCR3. Reading any of these registers causes the CD1865 to ‘ mask-in’ three
bits specifying the channel number of the currently active channel. Normally these registers are
read by the host when it is handling a service request. In this case, the three bits are the number of
the channel requesting service. If any of the three GCR registers are read when the CD1865 is not
in a service request context, the three bits are the current value in the CAR.

Bits 4:2 are masked into the contents of these registers by the CD1865 when it is read by the host.
The actual contents of the register are not modified.

These three registers are provided as a convenience to the user. In most applications the user only
uses one of these locations and sets the register to an arbitrary value. However, in some cases it
may be useful to be able to record information about the state of the CD1865 (or the software
driving it) that is associated with each of the three service request types. In this case, the user may
store required information in the unused bits. When entering a service routine, the software can
check these bits (a ‘* sub-vector’) to read recorded states.

Prescaler

The Prescaler Period register (PPR) determines the fundamental ‘tick’ rate for all CD1865 on-
device timers, the Receiver Data Time-out and Transmitter Real-time Delay Timers. The PPR
counts Clock (CLK) periods, and the minimum PPR value used must guarantee a ‘tick’ length of

Datasheet

8.8

8.9

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

not lessthan 1.0 milliseconds. As shown in the Internal Operation Flow Chart, Figure 4 on page 25,
processing timer eventsisin the outer (lowest priority) loop of the CD1865 firmware. A timer tick
that istoo short may result in two ticks occurring within one pass through the outer loop; this
would result in missing onetick. Thisis not fatal, but it would result in inaccurate timings.

Channel Initialization and Changes

Prior to enabling the individual channels, program the Channel registers with required channel
options and parameters such as character lengths, parity type, Receive FIFO thresholds, modem
signal detection levels, bit rates, and so on. When ready to begin, enable service requests.

Channel initialization is accomplished by first writing to the CAR register with the number of the
channel to be programmed. This channel number automatically becomes part of the address for
subsequent channel register programming. The host can use the same set of register addresses for
all channels, thus eliminating the need to calcul ate addresses.

Certain channel options are controlled by the three Channel Option registers. All changesto the
Channel Option registers must be accompanied by setting the appropriate Channel Option register
‘changed’ bitsin the Channel Command register (CCR). The CD1865 processor regularly samples
the CCR for any valuethat isnot a‘0’. If the CCR isnot a‘0’, the CD1865 decodes the command
or commands, acts on them, and clears the CCR to signify completion of the commands. New
commands must not be issued until any existing commands have been completed.

Transmitting Data

When transmitting data, a service regquest is received when the Transmit FIFO is empty. The
number of the channel requesting service (for example, the one with the empty FIFO) is available
from the GCR. If there is more data to be sent, transfer up to 8 bytesto the FIFO. If no datais
available, disable the channel. The easiest way to accomplish thisis by clearing the appropriate bit
inthe Enableregister (). When new datais available, re-enable the channel by the , and a new
service request for transmit datais received. At that time, transfer the data to the FIFO. Channels
can be enabled or disabled by giving enable and disable commands by the Channel Command
register (CCR), but it is a slower process.

In some cases, it is necessary to know when a channel has sent the last bit of the last character
rather than an empty FIFO. One example would be when changing bit rates. Two bitsin the Enable
register (), TxMpty and TxRdy, control the exact conditions for generating a service request.
TxRdy indicates when the FIFO is empty, and TxM pty indicates when the last bit has been sent. It
is acceptable to have both bits set but proper operation is achieved by switching from the FIFO
empty status to the transmitter empty status when it is necessary to know that all data has been
completely sent. If they are set, the FIFO Empty Service Request always occursfirst. If thereisno
more data to be sent, the Transmitter Empty Service Request is received later, but in the mean time,
FIFO empty requests may also be received. Once the last bit of the last character has been sent, a
channel can be reconfigured.

87

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

8.10

8.11

8.11.1

8.11.2

88

Receiving Data

When receiving data, a service request is sent (for Good Data) when either the number of received
bytes meets the threshold level, the Receive Time-out expires, or there is Good Data followed by a
Receive Exception Condition (the CD1865 must transfer all the Good Data before giving the
Exception). In all cases, the service-request routine reads the channel number requesting service
(from GCR) and the number of bytes available (which can be more, the same, or less than the
number set as the threshold) from the Receive Data Count register (RDCR), and proceeds to
transfer that many bytes, if possible.

It is not necessary to transfer as many bytes as are available or any bytes at all. If the host’s buffer
isnearly or completely full, the host can accept only those bytesit has room for, disable Receive
Service Requests, exit the Service Request Routine, process the buffer, enable Receive Service
Requests, and wait for the next service request. If no bytes are transferred during a Receive Service
Request, and Receive Service Requests are still enabled, the CD1865 immediately re-requests
service because the internal conditions that caused the request to be issued are still true. The host
may either disable service requests or suspend host service request processing; however, both of
these options should be implemented carefully as suspending service requests may result in an
overflow condition if the suspension lasts too long.

Programming Examples

When writing programs for the CD1865 evaluation board, a few guidelines should be followed to
keep the programs from getting lost or error conditions to be encountered. This section discusses
some programming errors and ways to avoid them.

Programming the Service Match Registers

One common programming error is made when using the CD1865 in the area of Service Match
registers (SMR). The value placed in these three registers during chip initialization must exactly
match the value that is present on the address inputs AO-A6 during the service acknowledge cycle.
(When the ACKIN* control signal is activated.) If this condition is not met, the CD1865 does not
respond with aDTACK* to terminate the bus cycle. This causes the system to hang.

CD1865 Initialization

Initializing the CD1865 is simple and quite straight forward. This section presents some guidelines
for the sequence to write to the various registers to correctly complete the initialization process.
Refer to Section 8.4 on page 84 for aflow-chart style description of the process.

Thefirst step in the initialization processisto issue amaster reset command to the CD1865 internal
logic. Thiscan be donein one of the two ways: throughout the use of the RESET* control signal at
the hardware level, or viathe chip reset command at the software level. The software reset
command isissued by placing avalue of x’'81 in the CCR register. Internally the chip reset
command does the same thing as activating the RESET* control input. The internal micro-code
enters the exact same routines to setup the chip for operation. When the reset command has been
issued, the program must wait until the GSVR has avalue of x’' FF. Until thisvalueis placed in the
GSVR by the micro-code, the CD1865 initialization procedures are not complete.

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

The next function to be performed is global initialization. These steps set up the chip ID for the
CD1865, the Service Match registers (SMR) for the three service request levels and the Prescaler
Period register. The SMR should be programmed as discussed previously (Section 8.1). The
Prescaler Period register value (high and low) sets the basic time scale for internal timer operation,
such asthe receiver time-out period. A value must be chosen that yields atimer period of no less
than 0.1 ms.

Following global initialization, each channel must be programmed for the desired mode of
operation, including the transmit and receive baud rate divider constants, the individual character
settings such as parity, bits per character, and number of Stop bits. Receive FIFO threshold levels,
specia character values, modem output signal levels and interrupt conditions. Before beginning the
process of channel initialization, the CAR register must be loaded with the number of the register
to be worked on. One important point to remember is that before placing a new value in any of the
COR registers or issuing the COR change command, the CCR must be checked to be sure that it
has avalue of zero. If it isnot zero, then the CD1865 may be processing a previous CCR command
and the CCR and the CORs must be changed.

If the program isready at this point to respond to interrupts then the appropriate interrupt condition
bits for transmit and receive can be set in the SRER, and the transmitter and receiver can be
enabled by command to the CCR.

The following sections explain the initialization sequence.

Global Initialization

Use Set_Byteto writeto theregister, and Read Byte to read the register content. For details on the
two functions, refer to the following basic 1/0 operations.

Set Byt e(GSVR, 0x00); /1 Clear GSVR for chip reset
Wit _CCR(); /1 ConfirmCCR is clear

Set Byt e(CCR, 0x81); /1l Reset all Command

Wit _GSVR(); /1 wait to be FF

Set _Byt e(PPRH, 0x80); /1 Set up Timer Prescal er (High)
Set _Byte(PPRL, 0xe8); /1 Set up Tinmer Prescaler (Low)

/* set up the Service Match Register according to the decodi ng ACKIN val ue
/* In this case, we decoded to be 0x8x.

Set _Byte(RX_SMR, 0x8a); /1 Set Service Match reg.
Set _Byte(TX_SMR, 0x85);
Set Byt e(MDM_SMR, 0x81);
/1 comrent out the following line if is using
t he hardware acknow egenent.
/] Set _Byt e(SRCR, 0x40); /1 Set up the software interrupt acknow edge

Channel Initialization

Set _Byt e(CAR, chan); /'l Setup channel access register to be the
/1 Specified channel nunber.

Set Byt e(COR1, 0x03); /!l No parity, 8-bit char, 1l-stop bit

Set _Byt e(COR2, 0x00); /1 Disable all COR2 functions

Set Byt e(COR3, 0x35) ; /1 Special char detection, FCT

Wi t _CCR();

Set _Byt e(CCR, O0x4e);

Set Byt e(SCHR1, 0x11); /1 XON defined (cntl-Q 0x11)

Set _Byt e(SCHR2, 0x13); /1 XOFF defined (cntl-S 0x13)

Set Byt e(SCHR3, 0x11);

89

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

8.11.3

8.11.4

90

Set Byt e(SCHR4, 0x13);

Set _Byt e(RTPR, 0x05); /1 Set timeout val ue

Set _Byt e(TBPRH, 0x00) ; /1 Set Tx baud rate 115200 (devi sor 0x12) at
33 Mz

Set Byt e(TBPRL, 0x12) ;

Set _Byt e(RBPRH, 0x00) ; /1 Set Rx baud rate 115200 (devi sor 0x12) at
33 Mz

Set Byt e(RBPRL, 0x12) ;

Basic I/O Operations

All the example routines for accessing and programming the board resources are written in
Borland” C++, but can be easily ported to other languages. Specific device programming is not
included in this document; refer to the device data book for general programming information.

Read_Byte routine is used to read aregister within the CD1865. The sequence is shown below:
/!l Read the content of assigned register
unsi gned char Read_Byte(unsigned char addr)

{
return (inportb(BASE_ADDR+addr));

}

Set_Byteroutineis used to write to the register and is a similar operation as the Read Byte.
/1 Set the content of assigned register
void Set_Byte(unsigned char addr, unsigned char data)

{
out por t b(BASE_ADDR+addr, data);

}

Interrupt Response Operations

The CD1865 evaluation board generates asingle interrupt to the | SA busin responseto an interrupt
from any of the three possible sources within the CD1865 device. The interrupt sources are from
the receive system, the transmit system, or the modem functions from any of the available
channels. Thissingleinterrupt can be user selected to any of the three ISA -bus interrupt sources as
described in the configuration section. Note that due to all the interrupt signals being OR’ ed
together, the PC motherboard 8259A PIC must be programmed in level sensitive rather than edge-
sensitive mode.

Determining the Interrupt Source

The host’s response to an interrupt from the board isto call an interrupt service routine that
determines the type of interrupt pending and services the request. The example below shows one
way to perform the interrupt determination using the Interrupt Status register.

while ((int_status = Read_Byte(SRSR)) & 0x15){

/1 Case of Receiving interrupt
if (int_status & 0x10)
Servi ce_Rx(chan);

/1l Case of transmitting interrupt
if (int_status & 0x04)
Servi ce_Tx(chan);

Datasheet

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

if (int_status & 0x02)

Servi ce_MIm() ;

} //while

out portb(S8259, EQ); /*
out portb(S8259, RDI STAT);
li nportb(S8259))
out portb(M259, EQ);

if(

End of

/* issue End of

Interrupt */

/* Next access read the IS Reg. */

/* while the slave is not serving any int. */
Int.

(EAQ) to naster */

Oncethe interrupt source has been determined, the request must be serviced by issuing an IACKIN
signal to the device with the preprogrammed PIL R match value supplied as the address. A receive
interrupt acknowledge cycle might be written as shown. Immediately following the write to the
EOIR register to terminate the current interrupt context, the 8259A must be informed that the
service isover. Thisis done by the simple procedure shown at the end of the interrupt source
determination routine above.

Receive Interrupt Service

Servi ce_Rx(unsi gned char chan)

{

unsi gned charchannel, vector, RxCount;

int

vect or= Read_Byt e(0x8a);

channel =

RxCount =Read_Byt e(RDCR) ;

transfered.

Read_Byt e(GSCR1) >> 2;

it ((RxCount >0) &&(RxCount <=8))

{
if ((exception_data = Read_Byte(RCSR))
1
) I
recei ve
11
{
Set _Byte(CAR, chan);
Set _Byt e(SRER, 0x00); I
}
el se
I
no
I
{
i f (channel ==chan) { 11
for (i=RxCount; i>0; i--){
rx_str[rx_ptr]=Read_Byt e(RDR);
rx_ptr++;
Y/ 1for
Yot
el se 11
Rx_chan_err = 1,
} 11 else
Y O/lif

Set Byt e(EOSRR, 0x00);
End of 11

Transm t

witten to by the

routine to

/1 Correspondi ng host

1= 0)
/'l

/1 Set Transmit
I nterrupt Register

/1 perform hardware acknow edge

/1 RDCR contains the nunber of byte to be

Recei ve Exception: in this
Exanpl e, we di sabl e recei ve
Operation if detected a

Excepti on.

Di sabl e receive
Nor mal Recei ve Operation:
Recei ve excepti on.

Correct Receiving Channel

I ncorrect Receiving Channel

End of Int Reg. The

must be

interrupt service

91

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

92

/1 Signal to the CD1865 that the current
interrupt

/'l Service is concluded.
return;

Transmit Interrupt Service

Servi ce_Tx(unsigned char chan)

{
unsi gned char channel , vector, c;
int i;
vect or= Read_Byt e(0x85); /1 Perform hardware acknow edge
channel = Read_Byte(GSCR1l) >> 2;
if (channel ==chan) { /1 Make sure correct channel
for (i=1; i<=8 && lquit_tx ; i++){
Set _Byte(TDR, txmstr[tx_ptr[chan]++]);
if (tx_ptr[chan] >= strlen(txmstr)){
tx_ptr[chan] = 0; // Reset the pointer back to the
quit_tx = 1;
Y/ for
Y if
el se
Tx_chan_err = 1; /1 Wong transmtting channel.
Set _Byt e(EOSRR, 0x00); /1 Set Transmit End of Int Reg.
/1 The Transmit End of Interrupt Regi ster nust
/! Be witten to by the correspondi ng host
/1 Interrupt service routine to signal to the
// CD1865 that the current interrupt service
/1 1s concl uded.
return;
}

Modem Interrupt Service

Ser vi ce_MInm()

{
unsi gned char channel, vector;
vector = Read_Byte(MRAR); /1 Software acknow edge using MRAR
//vector = Read_Byte(0x81); /1 Conment out the previous line, if using

/1 hardware acknow edge.

channel = Read_Byte(GSCRl) >> 2;
swi t ch(Read_Byt e(MCR) &0xe0)

{
case 32: /1 case of CTS change interrupt
{
printf(" CTR has a changed state. \n");
br eak;
}
case 64: /'l case of CD change interrupt
{

printf(" CD has a changed state.\n");
br eak;

Datasheet

n
IntGI o Intelligent Eight-Channel Communications Controller — CD1865

case 128: /] case of DSR change interrupt
{
printf(" DSR has a changed state.\n");
br eak;
}
defaul t:
{
printf(" Invalid Modeminterrupt detected....... \n");
br eak;
}
}
Set _Byt e(MCR, 0x00); /1 Cear the Mbdem Change register after
/1 service the nodem request.
Set _Byt e(EOSRR, 0x00); /1l Clear the ECSRR register at the end
/1 nodem service routine.
return;
}
8.11.5 Polled Mode Operation

The Polled-mode operation can be used with any type of host CPU, or it can be used in
combination with interrupts to provide a Mixed-mode system optimized for a particul ar operation.
For detailsrefer to Section 5.5 on page 35.

In the Polled-mode operation, the Service Match registers need to be setup first (TSMR, RSMR,
MSMR) in the channel initialization routine. Once an interrupt is detected, it is acknowledged by
reading the corresponding register depending on the type of interrupt.
while (!'((int_status = Read_Byte(SRSR)) & 0x15))

{

/1l waiting for interrupt.
br eak;

}

/1 Case of Receiving interrupt
if (int_status & 0x10)
{
Read_Byt e(RSMR)
Service_Rx();

~—

| Case of transmitting interrupt
f (int_status & 0x04)

~ -

Read_Byt e(TSMR)
Service_Tx();

/'l case of nodeminterrupt
if (int_status & 0x02)
{
Read_Byt e(MSMR)
Servi ce_Min();

Datasheet 93

CD1865 — Intelligent Eight-Channel Communications Controller In

9.0 Detailed Register Descriptions
9.1 Register Map Quick Reference
Binar Default Hex Hex Hex
Name Description Access Addregs Value Address | Address Address Page
@bit)t | (Intel?)? | (Motorolad?®
Global Registers
GFRCR | &lobal Firmware Revision Code RW |1101011| 84 $6B4 $D6 $D7 98
Register
SRCR | Service Request Configuration RW |1100110| 0 $66 $cC $CD 98
Register
PPRH Prescaler Period Register High R/W 111 0000 FF $70 $EO $E1 100
PPRL Prescaler Period Register Low R/W 111 000 FF $71 $E2 $E3 100
MSMR Modem Service Match Register R/W 110 0001 0 $61 $C2 $C3 100
TSMR Transmit Service Match Register R/W 110 0010 0 $62 $C4 $C5 101
SSVR Receive Service Match Register R/W 110 0011 0 $63 $C6 $C7 101
Global Vector Register RW | oo FF $40 $80 $81 102
SRSR Service Request Status Register R 110 0101 0 $65 $CA $CB 103
MRAR | Modem Request Acknowledge R |1110101| 80 $75 $EA $EB 105
Register
TRAR | ransmitRequest Acknowledge R |1110110| 80 $76 $EC $ED 105
Register
RRAR | Receive Request Acknowledge R 1110111 | 80 $77 $EE $EF 105
Register
GSCR1 | Global Channel Register 1 R/W 0100001 0 $41 $82 $83 106
GSCR2 | Global Channel Register 2 R/W 01001% 0 $42 $84 $85 106
GSCR3 | Global Channel Register 3 R/W 100 0011 0 $43 $86 $87 106
CAR Channel Access Register R/W 110 0100 0 $64 $C8 $C9 107
Indexed Indirect Registers
RDCR Receive Data Count Register R 000 0111 0 $07 $OE $OF 108
RDR Receiver Data Register R 111 1000 0 $78 $FO $F1 109
RCSR Receiver Character Status Register R 111 1010 0 $7A $F4 $F5 110
TDR Transmit Data Register w 111 1011 0 $7B $F6 $F7 111
EOSSR | End Of Register w 111 1111 0 $7F $FE $FF 111
NOTES:

1. Hex address for 8-bit processor.

2. Address for Intel-style processor, see the following description.

3. Address for Motorola-style processor, see the following description.
4. $ denotes address value.

94 Datasheet

In o Intelligent Eight-Channel Communications Controller — CD1865

Binar Default Hex Hex Hex
Name Description Access Addregs Value Address | Address Address Page
8 bit)t | (Intel™)? | (Motorolad?
Channel Registers
. 000
SRER Enable Register R/W 0010 0 $02 $04 $05 112
. 000
CCR Channel Command Register R/W 0001 0 $01 $02 $03 112
COR1 Channel Option Register 1 R/W 000 0011 0 $03 $06 $07 116
COR2 Channel Option Register 2 R/W 0010000 0 $04 $08 $09 116
. . 000
COR3 Channel Option Register 3 R/W 0101 0 $05 $0A $0B 117
CCSR Channel Control Status Register R 000 0110 0 $06 $0C $0D 118
RBR Receiver Bit Register R 011 0011 21 $33 $66 $67 119
RTPR Receive Time-Out Period Register R/W 1000010 5 $18 $30 $31 120
RBPRH E%Che"’e Bit Rate Period Register RW |0110001| 0 $31 $62 $63 120
RBPRL fgv‘\:le"’e Bit Rate Period Register RW |0110010| 0 $32 $64 $65 120
TBPRH Lrigﬂsm” Bit Rate Period Register RW |0111001| 0 $39 $72 $73 121
TBPRL I{E\:‘sm” Bit Rate Period Register RW |0111010| O $3A $74 $75 121
. . 000
SCHR1 | Special Character Register 1 R/W 1001 0 $09 $12 $13 121
SCHR2 | Special Character Register 2 R/W 1000100 0 $OA $14 $15 122
SCHR3 | Special Character Register 3 R/W 000 1011 0 $0B $16 $17 122
SCHR4 | Special Character Register 4 R/W 000 1100 0 $0C $18 $19 123
MCR Modem Change Register R/W 0000110 0 $12 $24 $25 123
. . 001
MCOR1 | Modem Change Option Register 1 R/W 0000 0 $10 $20 $21 124
. . 001
MCOR2 | Modem Change Option Register 2 R/W 0001 0 $11 $22 $23 125
. . 010
MSVR Modem Signal Value Register R/W 1000 0 $28 $50 $51 125
Modem Signal Value Request To 010
MSVRS Send w 1000 0 $29 $52 $53 126
Modem Signal Value Data Terminal 010
MSVDR Ready w 1010 0 $2A $54 $55 126
NOTES:

1. Hex address for 8-bit processor.

2. Address for Intel-style processor, see the following description.

3. Address for Motorola-style processor, see the following description.
4. $ denotes address value.

Datasheet 95

CD1865 — Intelligent Eight-Channel Communications Controller

intel.

Even though not all of the CD1865 registers are intended to be read/write, there is no hardware
mechanism to prevent the user from writing to them. The registers should, in some cases, not be
written to by the host. See the individual register descriptions for details.

In the register map, the binary addresses are shown relative to the CD1865 addresslines. In 16- and
32-bit systems, it is a common practice to connect 8-bit peripheralsto only 1-byte lane. In 16-bit
systems, the CD1865 appears at every other address, that is, AO in the CD1865 is connected to Al
in the host. In 32-hit systems, the CD1865 appears at every fourth address, that is, AO in the
CD1865 is connected to A2 in the host. In both of these cases, the addresses used by a programmer
are different than what is shown.

For instance, in a 16-bit Motorola 68000-based system (or other ‘big-endian’ processors), the
CD1865 is placed on data lines DO-D7 that are at odd addresses in the Motorola manner of
addressing. The A0 inthe CD1865 is connected to A1 of the 68000. Thus, the CD1865 address $40
becomes $81 to aprogrammer. It is‘left-shifted’ one bit, and AO must be ‘1’ for low-byte (DO-D7)
accesses.

In a16-bit Intel system (or other ‘little-endian’ processors), the CD1865 is again placed on data
lines DO-D7, but these are at even addresses. The A0 in the CD1865 is connected to the Al in the
host, but the host’s AO must be a ‘0’ to access datalines DO-D7.

Many 32-bit processors have internal logic to ‘ steer’ the data to the correct pins regardless of
address value. However, if the processor employed does not, a scheme similar to the one described
for 16-bit machines can be used, except that the CD1865 addresses are shifted 2 bitsinstead of one.

Table 9. Register Summary (Sheet1 of 2)
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Global Registers
GFRCR Firmware Revision Code
SRCR PkgTyp RegAckEn DaisyEn GlobPri UnFair Reserved AutoPri PriSel
PPRH Binary Value
PPRL Binary Value
MSMR Binary Value
TSMR Binary Value
RSMR Binary Value
User User User User User
GSVR Defined Defined Defined Defined Defined IT2 1 ITo
SRSR ILV[1] ILV[O] RREQext RREQint TREQext TREQint MREQext MREQint
MRAR Modified Interrupt Vector Provided On Read
TRAR Modified Interrupt Vector Provided On Read
RRAR Modified Interrupt Vector Provided On Read
User User User User User
GSCR1 Defined Defined Defined c2 c1 co Defined Defined
User User User User User
GSCR2 Defined Defined Defined c2 c1 co Defined Defined
User User User User User
GSCR3 Defined Defined Defined c2 c1 co Defined Defined
CAR Reserved Reserved Reserved Reserved A7(0) Cc2 C1 Co
96 Datasheet

In o Intelligent Eight-Channel Communications Controller — CD1865

Table 9. Register Summary (Sheet 2 of 2)

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Indexed Indirect Registers
RDCR 0 0 0 0 CT3 CT2 CT1 CTO
RDR D7 D6 D5 D4 D3 D2 D1 DO
RCSR Time-Out SC Det2 SC Detl SC Det0 Break PE FE OE
TDR D7 D6 D5 D4 D3 D2 D1 DO
EOSRR Irrelevant Value
Channel Registers
SRER DSR CD CTS RXD RXSC TxRdy TxMpty NNDT
CCR %iSAENT CCHOI\IRG SE'E‘:DH SP CHAN CTL D3 D2 D1 DO
COR1 Parity PArM1 ParM0 Ignore Stop 1 Stop 0 CHL1 CHLO
COR2 IXM TXIBE ETC LLM RLM RtsAO CtsAE DsrAE
COR3 Xon CH Xoff CH FCT SCDE RxTH3 RxTH2 RxTH1 RxTHO
CCSR RXEN RxFloff RxFlon Not Used TxEn TxFloff TxFlon Not Used
RBR Reserved RxD Start Hunt Reserved Reserved Reserved Reserved Reserved
RTPR Receiver Data Time Out Period
RBPRH Receive Bit Rate Divisor Byte High
RBPRL Receive Bit Rate Divisor Byte Low
TBPRH Transmit Bit Rate Divisor Byte High
TBPRL Transmit Bit Rate Divisor Byte Low
SCHR1 Special Character 1
SCHR2 Special Character 2
SCHR3 Special Character 3
SCHR4 Special Character 4
MCR DSRchg Cdchg CTSchg 0 0 0 0 0
MCOR1 DSRzd Cdzd CTSzd 0 DTRth3 DTRth2 DTRthl DTRthO
MCOR2 DSRod Cdod CTSod 0 0 0 0 0
MSVR DSR CD CTS Not Used Not Used Not Used DTR RTS
MSVRTS 0 0 0 0 0 0 0 RTS
MSVDTR 0 0 0 0 0 0 DTR 0
9.2 Global Registers

Global registers provide a function common to all channels. There are two groups of Global
registers. those that control the configuration of the CD1865 and those that control service
requests/interrupts.

Datasheet 97

CD1865 — Intelligent Eight-Channel Communications Controller

9.21

9.21.1

intel.

Miscellaneous Registers

Global Firmware Revision Code Register

Register Name: GFRCR

Register Description: Global Firmware Revision Code Register
Default Value: 84

Access: Read/Write

8-Bit Hex Address: $6B
Intel Hex Address: $D6
Motorola Hex Address: $D7

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Firmware Revision Code

Thisregister isinitialized by the firmware during the power-on reset initialization routine to
contain the current firmware version code of the CD1865.
ThisregisterisaRAM location and may be modified by the user. The CD1865 setsit to the defined
value only when a hardware or software reset is performed, and its contents are otherwise ignored.
This value can be modified to indicate the configuration status of the CD1865, or to indicate any
other requirement.

9.2.2 Configuration Registers

9.2.2.1 Service Request Configuration Register

Register Name: SRCR

Register Description: Service Request Configuration Register
Default Value: 0

Access: Read/Write

8-Bit Hex Address: $66
Intel Hex Address: $CC
Motorola Hex Address: $CD

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

PkgTyp

RegAckEn

DaisyEn

GlobPri

UnFair

Reserved

AutoPri

PriSel

98

Thisregister configures the CD1865 depending on the method chosen for handling service
requests. In addition to the ‘traditional’ interrupt-based host interface, writing the appropriate bits
in this register provides for software- rather than hardware-based service request
acknowledgments, fixes service request prioritiesin either of two ways, and controls Fair Share
Interrupt operation. This register preserves compatibility with existing CD1865 software. For this
reason, this register defaultsto all zeroes and must be enabled for each new feature as required.

RegAckEn and DaisyEn Bits are related to each other, and perform service-request
acknowledgments by accessing registers within the CD1865 instead of asserting hardware signals.

Service requests are prioritized by four other bits. AutoPri enables the priority scheme; PriSel,
GlobPri, and UnFair determine the specific priority to be used.

Datasheet

In o Intelligent Eight-Channel Communications Controller — CD1865
Bit Description
Bit 7 PkgTyp: This read-only bit indicates the CD1865 package type. This bit always reads back as .

RegAckEn: Enables register-based service-request acknowledgments. If this bit is a ‘0", register-based
acknowledgments are not accepted. In this case, the results of a read of any of the service-acknowledgment
registers are undefined. This is the default state of RegAckEn, and it ensures compatibility with earlier
versions of the CD1865.

When RegAckEn is enabled, register-based acknowledges allow the user’s software to acknowledge a
service request by reading from a register rather than by driving the external ACKIN* signal. This is
convenient in applications where interrupts are not supported or where polling is preferred. Setting this bit
does not disable the function of the ACKIN* signal.

Bit 6

DaisyEn: Enables daisy-chaining of register-based service acknowledgments. When DaisyEnis a ‘1’, a
CD1865 being addressed with a register-based service acknowledgment (a read occurs from a register-
acknowledgment address) for which it has a pending request, places the contents of the Global Interrupt
Vector register modified by the service type on the data bus.

When DaisyEn is a ‘1’, a CD1865 being addressed with a register-based service acknowledgment, for which it
does not have a pending service request, asserts ACKOUT* to pass the acknowledgment down the daisy
chain. The next CD1865 in the chain monitors the acknowledgment as an ACKIN* acknowledgment. The
Service Request Acknowledge register addresses must be placed in the corresponding Service Match

) registers (, , and) as part of the user setup for daisy-chaining of register-based service acknowledgments.
Bit5 If daisy-chaining of register-based service acknowledgments is not used, the Service Match registers may be
programmed with any address codes that the user finds convenient for use with the ‘normal’ ACKIN* service-
acknowledge mechanism.

If DaisyEn is a ‘0’ and a CD1865 is addressed with a register-based service acknowledgment for which it does
not have a pending service request, it responds by providing an interrupt vector with a modification code of
‘000’. The addressed CD1865 treats this as an interrupt acknowledge cycle, but with passing inhibited, it must
‘take’ the acknowledge with an ACK level of ‘00’ (none of the interrupt types).

RegAckEn must be a ‘1’ to enable register-based service acknowledgments. DaisyEn has no effect on daisy-
chain operation of the regular ACKIN*/ACKOUT* chain.

GlobPri: When AutoPri is used, if GlobPri is set to a ‘1’, the CD1865 prioritizes across multiple CD1865s
sharing REQ () lines. If GlobPri is set to a ‘0", the CD1865 accepts the acknowledge for the highest priority on-
device interrupt. In both cases, automatic prioritizing is only done on type 1 (normally the modem signal
change type) interrupt acknowledgments through the ACKIN* mechanism or the register-based acknowledge
Bit 4 mechanism.

When using GlobPri and AutoPri, it is possible to use the CD1865 with the three REQ lines wire-OR’ed
together. In this configuration, with any interrupt request asserted, the global values of all requests appears
asserted. GlobPri should be a ‘0’ to force prioritization among the interrupt sources on-device. When no on-
device interrupts are pending, the acknowledgment is subject to daisy-chaining. See DaisyEn description.

UnFair: Fairness Override bit. If UnFair is a ‘0’, normal Fair Share Interrupt control is performed. If UnFair is a
Bit 3 ‘1", the fair bits are all forced to a ‘1’, disabling the Fair Share mechanism. This is useful when the AutoPriority
Option is used, and the different REQ lines are wire-OR’ed together.

Bit 2 Reserved. Must be a ‘0.

AutoPri: When set, indicates that the CD1865 should prioritize service requests in the manner selected by
the PriSel bit. In conjunction with the GlobPri bit, either local (within the device) or global (across daisy-
chained devices) prioritization is done. With AutoPri set, auto-prioritization is performed only when a type 1
(modem) interrupt acknowledgment is recognized. Acknowledgments of type 2 (transmit) and 3 (receive)

) interrupts continue to be unique and specific even with AutoPri set. This offers a form of local override to Auto-
Bit 1 prioritization for Transmit or Receive Service Request when continuing a second-priority service routine. If not
set, the user must indicate the service request being acknowledged by the choice of service request
acknowledge register.

AutoPri x GlobPri => look at REQext to prioritize globally.
AutoPri x GlobPri* => look at REQ to prioritize locally.

PriSel: Prioritized interrupt order option. If AutoPri is set, PriSel selects the highest-priority service request. If
Bit 0 PriSel is a ‘0, receive requests have the highest priority. If PriSel is a ‘1’, transmit requests have the highest
priority. Modem signal change request priority is fixed at the lowest priority.

Datasheet 99

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

9.2.2.2 Prescaler Period Registers (High/Low)
Register Name: PPRH 8-Bit Hex Address: $70
Register Description: Prescaler Period Register (High) Intel Hex Address: $EO
Default Value: FF Motorola Hex Address: $E1
Access: Read/Write
Bit 7 Bit 6 Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0
Binary Value
Register Name: PPRL 8-Bit Hex Address: $71
Register Description: Prescaler Period Register (Low) Intel Hex Address: $E2
Default Value: FF Motorola Hex Address: $E3
Access: Read/Write
Bit 7 Bit 6 Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0
Binary Value

These two registers provide the initialization value for the Timer Prescaler that is clocked by the
system clock. This establishes the clock for the various on-device timers.

The value loaded into these registers must establish a clock period of at least 1.0 msec. For aclock
speed of 33 MHz, the value must be 33,000 (decimal) or larger. The valuesin these registers are
programmed to be FF (Hex) automatically upon a hardware reset.

9.2.2.3 Modem Service Match Register
Register Name: 8-Bit Hex Address: $61
Register Description: Modem Service Match Register Intel Hex Address: $C2
Default Value: 0 Motorola Hex Address: $C3
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Binary Value

This register must contain the value for Modem Signal Change Service Requests that are presented
on the Address Bus AO-A6 by the host to indicate the type of service request being acknowledged

when ACKIN* is asserted. Thisregister, along with the other two Match registers, is compared to

the value on the Address Bus during acknowledgment cycles so that the CD 1865 can determine the
service request being acknowledged by the host.

Bit 7 must be programmed to a‘1’. The CD1865 compares al eight bits internally, but there are
only seven addresslines. Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7
of the register is compared with alogic ‘1'.

Within any one CD1865, the three Match registers must have unique values. In multiple CD1865
designs where service acknowledgments are cascaded, all Match registers of the same type (for
example, Modem) must have the same value.

100 Datasheet

intel.

9.2.2.4

Intelligent Eight-Channel Communications Controller — CD1865

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the
addresses of these registers must be placed in the equivalent Match register so that contains $75.

Transmit Service Match Register

Register Name
Register Descri
Default Value:

: 8-Bit Hex Address: $62

Access: Read/Write

ption: Transmit Service Match Register Intel Hex Address: $C4
0 Motorola Hex Address: $C5

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Binary Value

9.2.25

Thisregister must contain the value for Transmit Data Service Requests that are presented on the
Address Bus A0-A6 by the host to indicate the type of service request being acknowledged when
ACKIN* is asserted. Thisregister, along with the other two Match registers, is compared to the
value on the Address Bus during acknowledgment cycles so that the CD1865 can determine the
service request being acknowledged by the host.

Bit 7 must be programmedto a‘1’. The CD1865 compares all eight bitsinternally, but there are
only seven address lines. Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7
of the register is compared with alogic ‘1'.

Within any one CD1865, the three Match registers must have unique values. In multiple-CD1865
designs where service acknowledgments are cascaded, all Match registers of the same type (for
example, Transmit) must have the same value.

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the
addresses of these registers must be placed in the equivalent Match register so that contains $76.

Receive Service Match Register

Register Name:

8-Bit Hex Address: $63

Register Description: Receive Service Match Register Intel Hex Address: $C6

Default Value: 0 Motorola Hex Address: $C7

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 Binary Value
Thisregister must contain the value for Receive Data Service Requests that are presented on the
Address Bus A0-A6 by the host to indicate the type of service request being acknowledged when
ACKIN* is asserted. This register, along with the other two Match registers, is compared to the
value on the Address Bus during acknowledgment cycles so that the CD1865 can determine the
service request being acknowledged by the host.
Bit 7 must be programmed to a‘1’. The CD1865 compares all eight bits internally, but there are
only seven address lines. Bits 6:0 of the register are compared to A6:A0 of the Address Bus. Bit 7
of the register is compared with alogic ‘1'.
Datasheet 101

CD1865 — Intelligent Eight-Channel Communications Controller

9.2.2.6

Within any one CD1865, the three Match registers must have unique values. In multiple CD1865
designs where service acknowledgments are cascaded, all Match registers of the same type (for
example, Receive) must have the same value.

In designs using register-based service acknowledgments (RRAR, TRAR, and MRAR), the
addresses of these registers must be placed in the equivalent Match register so that contains $77.

Global Vector Register

intel.

NOTE: * This code is returned by the CD1865 only when RegAckEn is set, and DaisyEn is not set. In this
condition, the CD1865 must provide a vector when acknowledged. If the CD1865 receives an

acknowledgment for which it does not have a request pending, it returns ‘000"

102

Datasheet

Register Name: 8-Bit Hex Address: $40
Register Description: Global Service Vector Register Intel Hex Address: $80
Default Value: FF Motorola Hex Address: $81
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Binary Value IT2 IT1 ITO
Bit Description
These bits are user-defined. However, in a multiple-device design, these five bits must have a unique value in
each CD1865 to identify which CD1865 is returning a vector during service acknowledgments. When writing
Bits 7:3 to this register, write eight bits at once; the CD1865 modifies the low-three bits automatically. Note that if this
register is read in a normal manner, the original eight bits are read and the modified bits from the last
acknowledgment cycle is not preserved.
These three bits indicate the group/type of service request occurring. These bit are supplied by the CD1865
during an acknowledgment cycle.
IT2 IT1 ITO Value Group/Type
0 0 0 0 No Request Pending*
0 0 1 1 Modem Signal Change Service Request
0 1 0 2 Transmit Data Service Request
Bits 2:0
0 1 1 3 Receive Good Data Service Request
1 0 0 4 Reserved
1 0 1 5 Reserved
1 1 0 6 Reserved
1 1 1 7 Receive Exception Service Request

n
IntGI o Intelligent Eight-Channel Communications Controller — CD1865

9.2.3 Service Request/Interrupt Control Registers
9.2.3.1 Service Request Status Register
Register Name: 8-Bit Hex Address: $65
Register Description: Service Request Status Register Intel Hex Address: $CA
Default Value: 0 Motorola Hex Address: $CB
Access: Read only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ILV[1] ILV[O] ext int ext int ext int

Thei-level bits, ILV[1] and ILV[0], are the current context code from the service request context
stack. They are encoded as follows:

Datasheet 103

CD1865 — Intelligent Eight-Channel Communications Controller

Bit Description
ILV1 ILVO Context
0 0 Not in a service request context
0 1 CD1865 is in a Receive Service Request context
Bits 7:6 1 1 CD1865 is in a Transmit Service Request context
1 0 CD1865 is in a Modem Service Request context

An accepted interrupt acknowledge cycle pushes a new context onto the stack.

NOTE: The Status bits are positive true, and the * Pins are negative true. The ‘...int" (internal) values are
local to the device being read, and the ‘...ext’ (external) values are the current external status on the
pin, that is, the result of the wire-OR’ed function.

RREQext RREQint Context
0 0 No interrupts
Bits 5:4 0 1 Invalid state
1 1 The location device requests a receive interrupt.
1 0 _External interrupt pending. The local device has no receive
interrupts.
TREQext TREQIint Context
0 0 No interrupts
Bits 3:2 0 1 Invalid state
1 1 The location device requests a transmit interrupt.
1 0 _External interrupt pending. The local device has no transmit
interrupts.
MREQext MREQint Context
0 0 No interrupts
Bits 1:0 0 1 Invalid state
1 1 The location device requests a modem interrupt.
1 0 _External interrupt pending. The local device has no modem
interrupts.

104

Datasheet

intel.

9.2.3.2

Intelligent Eight-Channel Communications Controller — CD1865

Modem Request Acknowledge Register\

Register Name:

Register Description: Modem Request Acknowledge Register
Default Value: 80
Access: Read only

8-Bit Hex Address: $75
Intel Hex Address: $EA
Motorola Hex Address: $EB

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Modified Interrupt Vector provided on read
9.2.3.3 Transmit Request Acknowledge Register
Register Name: 8-Bit Hex Address: $76
Register Description: Transmit Request Acknowledge Register Intel Hex Address: $EC
Default Value: 80 Motorola Hex Address: $ED
Access: Read only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Modified Interrupt Vector provided on read
9.2.34 Receive Request Acknowledge Register
Register Name: 8-Bit Hex Address: $77
Register Description: Receive Request Acknowledge Register Intel Hex Address: $EE
Default Value: 80 Motorola Hex Address: $EF
Access: Read only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Modified Interrupt Vector provided on read
The Service Request Acknowledge registers are read-only registers that return an appropriate
interrupt vector when read. Reading one of these registers has the effect of a service
acknowledgment cyclein the CD1865 (not necessarily the one addressed; it may be one further
down the daisy chain). The vector supplied on the data bus during the cycle is described under the
Global Service Vector register description. RegAckEn must be set for these registers to operate
properly.
Datasheet 105

CD1865 — Int

9.2.3.5

n
elligent Eight-Channel Communications Controller Int6I®

Global Channel Registers 1

Register Name:

8-Bit Hex Address: $41

Register Description: Global Service Channel Register 1 Intel Hex Address: $82
Default Value: 0 Motorola Hex Address: $83
Access: Read/Write
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Binary Value Cc2 C1l Cco Binary Value
9.2.3.6 Global Channel Registers 2

Register Name:

8-Bit Hex Address: $42

Register Description: Global Service Channel Register 2 Intel Hex Address: $84
Default Value: 0 Motorola Hex Address: $85
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Binary Value Cc2 C1 Co Binary Value
9.2.3.7 Global Channel Registers 3

Register Name:

8-Bit Hex Address: $43

Register Description: Global Service Channel Register 3 Intel Hex Address: $86
Default Value: 0 Motorola Hex Address: $87
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Binary Value C2 C1l Cco Binary Value

106

There are three registers used to provide the channel number of the channel requesting service.
Reading any of these registers causes the CD1865 to ‘mask-in’ three hits, specifying the channel
number of the currently active channel. Normally these registers are read by the host when it is
handling a service request. In this case, the three bits are the number of the channel requesting
service. If any of the three registers are read when the CD1865 is not in a service request context,
the three bits are the current value in the CAR. Bits 4:2 are masked into the contents of this register
by the CD1865 when it isread by the host. The actual contents of the register are not modified.

These three registers are provided as a convenience to the user. In most applications, the user uses
one of these locations, and sets the register to an arbitrary value. All types of service routines
would use this register. However, in some cases it may be useful to be able to record information
about the state of the CD1865 (or the software driving it) that is associated with each of the three
service request types. In this case, the user may associate an individual register with each level of
service request, and store whatever information is required in the unused bits. When entering a
service routine, the software can check these bits (a sub-vector) to read recorded states.

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

Bit Description
Bits 7:5 User-defined
Defines the service requesting channel number.

c2 C1 Cco Channel Number
0 0 0 Channel 0
0 0 1 Channel 1

Bits 4:2 0 1 0 Channel 2
0 1 1 Channel 3
1 0 0 Channel 4
1 0 1 Channel 5
1 1 0 Channel 6
1 1 1 Channel 7

Bits 1:0 User-defined

9.2.3.8 Channel Access Register

Register Name:

Register Description: Channel Access Register
Default Value: 0

Access: Read/Write

8-Bit Hex Address: $64
Intel Hex Address: $C8
Motorola Hex Address: $C9

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved A7(0) Cc2 C1 Co

Datasheet

Thisregister contains the channel number used for channel-oriented host read or write operations
when the host is not in a service request service routine. When the CD1865 and the host arein a
service request routine, the CD1865 supplies the service-requesting channel number by the Global
Interrupting Channel register. The Channel Access register contents are not used during service
request. The host service request routine is restricted to accessing only the register set of the
service-requesting channel and the Global registers.

The Channel Access register is used by the host when the host is setting up or modifying the

configuration of the channel. It is also used to issue certain channel-specific commands such as
sending a flow-control character.

107

CD1865 — Intelligent Eight-Channel Communications Controller

intel.

Bit Description
Bits 7:4 Reserved, must be a ‘0'.
Internally, to the CD1865, this is Address bit 7. This bit completes the external to internal CD1865 register
Bit 3 address mapping, but it is only to be used for test purposes. In normal operation, this bit should always be a
‘0.
Channel number
Cc2 C1 Co Channel Number
0 0 0 Channel 0
0 0 1 Channel 1
Bits 2:0 0 1 0 Channel 2
0 1 1 Channel 3
1 0 0 Channel 4
1 0 1 Channel 5
1 1 0 Channel 6
1 1 1 Channel 7
9.3 Indexed Indirect Registers
Certain registers are specially designed to facilitate service-request handling. These registers do not
exist as distinct registers, and can be thought of as pointers. These registers provide functions that
arevalid only during service-request service routines, and they must not be accessed at other times.
Three of the registers are actually pointers to the Transmit and Receive FIFOs, that is, when
referenced they cause the appropriate FIFO to be accessed. These registers are: Receive Data
register, Receive Character Status register, and Transmit Data register.
The CD1865 maintains all channel-specific information. During data transfer between the host and
the CD 1865, the CD1865 uses a context-switching technique to switch the proper channel-specific
information into the Global registers for use by the host. This reduces the processing burden on the
host by eliminating the need to cal cul ate address offsets.
9.3.1 Receive Data Count Register

Register Name:

Register Description: Receive Data Count Register
Default Value: 0

Access: Read Only

8-Bit Hex Address: $07
Intel Hex Address: $0E
Motorola Hex Address: $0F

Bit 7

Bit 6

Bit5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

CT3

CT2

CT1

CTO

108

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Bit

Description

Bits 7:4

Reserved, must be a ‘0'.

Bits 3:0

Specifies the number of Good Data bytes for transfer from the Receive FIFO at the time of service request.
This may be larger or smaller than the threshold level set by the user. This register reflects the actual amount
of data available, which can be greater than the threshold level if service-request response is slow, or less
than the threshold if some other event (such as an error condition) has caused the Receive Good Data
Interrupt. This register need only be read when receiving Good Data; by default all exceptions are one
character, and the value in this register during a Receive Exception is not defined or meaningful. The RDCR
contains a zero if the current service request is for the NNDT case.

0
W
(@]
N
(@]
=
@)
o

Number of Good Bytes

Does not occur

| PP O|O|(FR|FR|O| O

r|lO|lO|O|O|O|O|O| O
O|rR|RFRP|FP|FPLP|O|O|O| O
O|rRr|O|FrR|[|O|FR|O|FL| O
O N|[lOoO|a| | W[N]

0
1001 to 1111

Does not occur

9.3.2

Receive Data Register

Register Name:

Register Description: Receive Data Register
Default Value: 0

Access: Read Only

8-Bit Hex Address: $78
Intel Hex Address: $FO0
Motorola Hex Address: $F1

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

D7

D6 D5 D4 D3 D2 D1 DO

Datasheet

Thisregister accesses the Receive Data FIFO for the channel. It is used by all channelsto transfer
Receive FIFO data to the host. Successive reads transfer bytes from the FIFO to the host. Reading
this register increments an internal pointer to the Data and Status FIFOs. During service-request
routines for Good Data, thisis the only register that must be read. During service-request routines
for Receive Exception, the Receive Status register must be read first, then this register may be read.
If both the RCSR and this register are to be read, the RCSR must be read first because reading this
register causes the FIFOsto ‘pop’.

Any attempt to write to this register causes unpredictable results.

109

CD1865 — Intelligent Eight-Channel Communications Controller In

9.3.3

Receive Character Status Register

Register Name:

8-Bit Hex Address: $7A

Register Description: Receive Character Status Register Intel Hex Address: $F4
Default Value: 0 Motorola Hex Address: $F5
Access: Read Only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Time-out SC Det2 SC Detl SC Det0 Break PE FE OE
Thisregister accesses the status information for the current receive character.
Bit Description
Time-out: Indicates that the Receive FIFO is empty, and no data has been received within the receive time-
Bit 7 out period. There is no data character associated with this status and no other status bits are valid if the Time-
out bit is set. Must be ‘armed’ by the NNDT bit in .
Special Character Detect (SCDO0-2):
SCD2 SCD1 SCDO Status
0 0 0 None detected
0 0 1 Special Character 1 or Special Character 1 and 3 sequence matched
(only if Special Character 1 and 3 sequence is enabled).
Bits 6:4 0 1 0 Special Character 2 or Special Character 2 and 4 sequence matched
(only if Special Character 1 and 3 sequence is enabled).
0 1 1 Special Character 3 (only if Special Character 1 and 3 sequence is not
enabled).
1 0 0 Special Character 4 (only if Special Character 2 and 4 sequence is not
enabled).
NOTE: No special-character match is performed if any type of error occurs. The second character of a two-
character sequence cannot cause a receiver overrun.
Bit 3 Break: Indicates that a break has been detected.
Bit 2 Parity Error: Indicates that a parity error has been detected.
Bit 1 Framing Error: Indicates that a bad Stop bit has been detected.
Overrun Error: Indicates that new data has arrived but the CD1865 FIFO and Holding registers
Bit 0 are full. The new data is lost and the overrun indication is flagged on the last character received

before the overrun occurred.

110

Multiple errorsin 1 byte are possible because the CD1865 eval uates the character bit-by-bit as it
receivesit. For example, aparity error is detected and flagged before aframing error. If acharacter
isreceived with every bit (including the stop bit) equal toa'0’, it ismarked as aline-break. If some
bitsarea‘1’, but the Stop bitis‘missing’ a‘0’, it ismarked as aframing error. If odd parity is set
and the bitsreceived are all zeroes, it is marked as both a break character and a parity error. In
addition to any other bits, the Overrun bit is set if an overrun has occurred. Any attempt to write to
this register causes unpredictabl e results.

Datasheet

intel.

9.34

Intelligent Eight-Channel Communications Controller — CD1865

Transmit Data Register

Register Name
Register Descri
Default Value:

Access: Write Only

ption: Transmit Data Register
0

8-Bit Hex Address: $7B
Intel Hex Address: $F6
Motorola Hex Address: $F7

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
D7 D6 D5 D4 D3 D2 D1 DO

When servicing a Transmit Data Service Request, the Transmit Data register accesses the Transmit
FIFO of the service-requesting channel. Datais written to the Transmit Data register by the host;
the CD 1865 automatic FIFO pointer mechanism places the data into the service-requesting
channel’s Transmit Character FIFO. Up to 8 bytes of data may be written into the TDR during
Transmit Data Service Request.
Any attempt to read from this register causes unpredictabl e results.

9.35 End-of-Service Request Register

Register Name:
Register Descri
Default Value:

Access: Write Only

8-Bit Hex Address: $7F
Intel Hex Address: $FE
Motorola Hex Address: $FF

ption: End-of-Service Request Register
0

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Irrelevant Value

9.4

Datasheet

Thisisadummy register, and must be written to by the host’s service request routine to signa to
the CD1865 that the current service-request service is concluded. Thismust be thelast accessto the
CD1865 during a service-request routine. Writing to this register generates an internal End Of
Service signal, which ‘pops’ the CD1865's service-request-context stack, allowing the CD1865 to
resume normal processing and also service other channels. Service-request contexts may be nested,
as explained in Section 5.4; that is, one can respond to and service a higher-priority event whilein
the middle of alower-priority service request routine (nesting subroutine calls within other
subroutines).

Any attempt to read from this register causes unpredictable results.

Channel Registers

There are eight sets of Channel registers, but only one set isavailable at any given time. This offers
the software-simplifying advantage that a given register is at the same address regardless of the
channel number. To access a given channel’s registers, first point to them by writing the channel
number to the Channel Access register.

111

CD1865 — Intelligent Eight-Channel Communications Controller In o
9.4.1 Enable Register
Register Name: 8-Bit Hex Address: $02
Register Description: Service Request Enable Register Intel Hex Address: $04
Default Value: 0 Motorola Hex Address: $05
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DSR CD CTS RxD RxSC TxRdy TxMpty NNDT

A ‘1’ in each bit position enables service request generation for the associated cause.

Bit Description

Data-Set-Ready (DSR) Service Request: When enabled, generates a Modem-Change Service Request on

Bit 7 the selected level changes of the DSR Input.

Carrier Detect (CD) Service Request: When enabled, generates a Modem-Change Service Request on the

Bit 6 selected level changes of the CD Input.

Clear-To-Send (CTS) Service Request: When enabled, generates a Modem-Change Service Request on

BitS the selected level changes of the CTS Input.

Receive Data Service Request: When enabled, the Receive Data Service Request is generated for receive

Bit 4 data and Receive Exceptions.

Receive Special Character (RxSC) Service Request: When enabled, the Receive Data Exception Service
Request is generated when a received character matches one of the four user-defined special characters.
Bit 3 When disabled, Receive Exceptions are generated for error conditions and time-outs only. If flow-control
transparency is set, flow-control characters are stripped, and no Receive Special Character Exceptions
occurs.

Transmit Ready (TxRdy) Service Request: When enabled, the transmitter generates a service request
when the Transmit FIFO becomes empty. Set this bit when first beginning transmission on a channel, and
before attempting to write data to the Transmit FIFO. Enabling the service request causes an immediate
Transmit Service Request, allowing it to write data into the Transmit FIFO in the usual manner. This bit may be
set and cleared as needed to regulate the assertion of Transmit Data Service Requests on each channel. This
technique is preferred over disabling the transmitter.

Bit 2

Transmitter Empty (TxMpty) Service Request: When enabled, a service request is generated when the
Bit 1 Transmit FIFO, the Transmit Holding register, and the Transmit Shift register are all empty. This mode is
provided to allow the host to determine when all bits are sent and it is safe to alter a channel’s configuration.

No New Data Time-out (NNDT) Service Request: When enabled, a Receive Exception Service Request is
Bit 0 generated after the completion of data transfer from the CD1865 to the host. This feature assists in buffer
management by providing a notice of a gap in the Receive Data Stream longer than the time-out period.

9.4.2 Channel Command Register
Register Name: 8-Bit Hex Address: $01
Register Description: Channel Command Register Intel Hex Address: $02
Default Value: 0 Motorola Hex Address: $03
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RESET CHAN| COR CHNG | SEND SP CH | CHAN CTL D3 D2 D1 DO

112 Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

The CCRisaspecia register used to prompt the CD1865 processor to indicate if any channel
parameters have changed. Bits are set in the CCR to indicate which of several commands to carry
out. The CD1865 processor notes changes in these bits and makes the required adjustments to the
hardware; this process can take from microseconds to milliseconds. Therefore, it isimportant that
the host CPU waits until the CD1865 processor has finished the current command before issuing
any more commands, or continuing with any operation that the command affects. For example,
after setting the Local Loopback bit in COR2, the host must wait until the command is complete
before resuming transmission. If the host does not wait, characters may not be properly looped
back.

Reset Channel, Channel Option, Send Special Character, and Channel Control commands can be
set through the CCR register. One of the four commands can be selected by setting the appropriate
bit (7:4). The commands can be defined in detail by setting the bit fields (3:0) accordingly. Bit
fields (3:0) are defined differently by each command. The CD1865 indicates completion by
clearing the CCR.

Bit Description
Bit 7 Reset Channel Command.
Bit 6 Channel Option Register Command.
Bit 5 Send Special Character(s) Command.
Bit 4 Channel Control Command.
Bits 3:0 Defined by the type of command being issued; see the following descriptions.
The tables on the following pages define the appropriate setting of the bits according to the
command.
Reset Channel Command
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RESET CHAN 0 0 0 0 0 0 TYPE
Thisis a software reset command. There are two types of reset — Channel Reset (type 0), which
resets only the current channel, and Global Reset (type 1), which resets the entire part to its power-
up condition. When the channel reset command is issued, the CD1865 disables the transmitter and
the receiver and clears the Data and Status FIFOs of the channel. Channel parameters are not
affected by a Channel Reset.
Bit Description
Bit 7 Reset Channel Command, must be a ‘1’.
Bits 6:1 Not used. Must be a ‘0’
Reset Type: If the Reset Type bit is a ‘0", a software reset of the channel is performed. The transmitter and
Bi receiver are disabled, and all FIFOs are cleared (flushed). If the Reset Type bit is a ‘1’, an on-device firmware
ito IO N 1
initialization of all channels is performed. All channel and global parameters are reset to their power-on reset
condition.

Datasheet

113

CD1865 — Intelligent Eight-Channel Communications Controller

Channel Option Register Change Command

intel.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 COR CHNG 0 0 COR3 COR2 COR1 N/U
Changes made to some Channel Option register bits must be signalled to the CD1865 by this
command. Any combination of COR changes may be indicated by one command. All of the bitsin
CORS3 take effect immediately, and all of the bitsin COR2 (except LLM) take effect immediately.
In other words, when changing COR3 or any of COR2 (except LLM), it is not necessary toissue a
Channel Option register Change Command. However, to preserve compatibility with older
CD1865 designs, it is acceptable to set these bits.
Bit Description
Bit 7 Must be a ‘0'.
Bit 6 Channel Option Register Change Command, must be a ‘1".
Bits 5:4 Must be a ‘0'.
Bit 3 Channel Option Register 3 changed (no longer required).
Bit 2 Channel Option Register 2 changed (required only for Local Loopback mode change).
Bit 1 Channel Option Register 1 changed.
Bit O Not used.
Send Special Character(s) Command
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 SEND SP CH 0 0 SSPC2 SSPC1 SSPCO
Bit Description
Bits 7:6 Must be a ‘0.
114 Datasheet

In Intelligent Eight-Channel Communications Controller — CD1865

Bit Description
Bit 5 Send Special Character(s) Command, must be a ‘1'.
Bits 4:3 Must be a ‘0.

Special Character Select

SSPC2 SSPC1 SSPCO Function
0 0 0 Do not use
Send Special Character 1, or characters 1 and 3 in sequence if
0 0 1 COR3 [XonCH] defines a two-character
sequence.
) 0 1 0 Send Special Character 2, or characters 2 and 4 in
Bits 2:0 sequence if COR3 [XoffCH] defines a two-character
sequence.
0 1 1 Send Special Character 3
1 0 0 Send Special Character 4
1 0 1 Do not use
1 1 0 Do not use
1 1 1 Do not use
Channel Control Command
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 CHAN CTL XMTR EN XMTR DIS RCVR EN RCVR DIS
Bit Description
Bits 7:5 Must be a ‘0’.
Bit 4 Channel Control Command, must be a ‘1’.
Bit 3 Transmitter Enable
Bit 2 Transmitter Disable
Bit 1 Receiver Enable
Bit 0 Receiver Disable

When turning the receiver or transmitter on or off, it is faster to simply enable and disable service
requests () rather than using the Channel Control Command.

Datasheet 115

CD1865 — Intelligent Eight-Channel Communications Controller

In

®
9.4.3 Channel Option Register 1
Register Name: COR1 8-Bit Hex Address: $03
Register Description: Channel Option Register 1 Intel Hex Address: $06
Default Value: 0 Motorola Hex Address: $07
Access: Read/Write
Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Parity ParM1 ParM0 Ignore Stop 1 Stop 0 CHL1 CHLO
Changes to this register must be signalled by the Channel Command register
Bit Description
Parity:
Bit 7 1 = odd parity.
0 = even parity.
Parity Mode 1 and 0: Defines Parity mode for both the transmitter and the receiver.
ParM1 ParM0 Parity
Bits 6:5 0 0 No parity
0 1 Force parity (odd parity = force 1, even = force 0)
1 0 Normal parity
1 1 Not used
Ignore: Ignore parity
Bit 4 0 = Evaluate parity on received characters.
1 = Do not evaluate parity on received characters.
Stop Bit Length: Specifies the length of the Stop bit.
Stopl Stop0 Stop Bit
Bits 3:2 0 0 1 StOp bit
0 1 1 1/2 Stop bits
1 0 2 Stop bits
1 1 2 1/2 Stop bits
Character Length:
CHL1 CHLO Character Length
Bits 1:0 0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits
9.4.4 Channel Option Register 2
Register Name: COR2 8-Bit Hex Address: $04
Register Description: Channel Option Register 2 Intel Hex Address: $08
Default Value: 0 Motorola Hex Address: $09

Access: Read/Write

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

IXM

TXIBE

ETC

LLM

RLM

RtsAO

CtsAE

DsrAE

116

Changes only to bit 4 (LLM) of thisregister must be signalled by the Channel Command register.

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Bit

Description

Bit 7

Implied Xon Mode (IXM): This bit has meaning only when in the automatic Transmit In-Band Flow-control
mode. During Transmit In-Band Flow-control mode, the CD1865 stops transmission upon detection of an Xoff
character or character sequence. The IXM bit determines whether the CD1865 should restart transmission
based on receipt of an Xon character or any character. When IXM bit is set, the CD1865 restarts transmission
upon detection of any character. When IXM bit is not set, the CD1865 waits for the Xon character or character
sequence to restart the transmission.

Bit 6

Transmit In-Band (Xon/Xoff) Flow Control Automatic Enable (TXIBE): The CD1865 in the Transmitting
mode is flow-controlled by the remote. Upon receipt of the Xoff character, the CD1865 terminates
transmission after the current character in the Transmit Shift register, and the character in the Transmit
Holding register is sent. The CD1865 resumes transmission upon receipt of the Xon character, or any
character, depending on the state of the IXM bit.

Bit 5

Embedded Transmitter Command Enable (ETC): If set, the embedded special transmitter command
functions are enabled.

Bit 4

Local Loopback Mode (LLM):

1 = Enables the Local Loopback mode.
0 = Disables the Local Loopback mode.

Bit 3

Remote Loopback Mode (RLM):

1 = Enables the Remote Loopback mode.
0 = Disables the Remote Loopback mode.

Bit 2

RTS Automatic Output Enable (RtsAO): When set, if the channel is enabled, the CD1865 automatically
asserts the RTS* Output when it has characters to send. If CtsAE is also set, it waits for CTS* to respond prior
to transmission.

Bit 1

CTS Automatic Enable (CtsAE): Enables the CTS* Input to be used as automatic transmitter enable or
disable.

Bit 0

DSR Automatic Enable (DsrAE): Enables the DSR* Input as automatic receiver enable or disable.

9.4.5

Channel Option Register 3

Register Name:

Register Description: Channel Option Register 3

Default Value: 0

8-Bit Hex Address: $05
Intel Hex Address: $0A
Motorola Hex Address: $0B

COR3

Access: Read/Write

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
Xon CH Xoff CH FCT SCDE RxTH3 RxTH2 RxTH1 RxTHO
Changes to this register do not have to be signalled by the CCR.
Datasheet 117

CD1865 — Intelligent Eight-Channel Communications Controller In o
Bit Description
Xon Character Definition:
Bit 7 0 = Xon Character is a single-character code, and it is defined by Special Character.
1 = Xon Character is a double-character sequence, and it is defined by Special Characters 1 and 3.
Xoff Character Definition:
Bit 6 0 = Xoff Character is a single-character code, and it is defined by Special Character 2.
1 = Xoff Character is a double-character sequence, and it is defined by Special Characters 2 and 4.
Flow-Control Transparency (FCT) Mode:
Bit 5 0 = Flow-control characters received are given to the host by Receive Exception Service Requests.
1 = Flow-control characters received are not given to the host by Receive Exception Service Requests.
Special-Character Detection Enable:
Bit 4 0 = Special-Character Status detection is disabled.
1 = Special-Character Status detection is enabled.
RxFIFO Threshold:
RxTh3 RxTh2 RxTh1 RxTHO Status
0 0 0 0 Do not use
0 0 0 1 1 character
0 0 1 0 2 characters
Bits 3:0 0 0 1 1 3 characters
0 1 0 0 4 characters
0 1 0 1 5 characters
0 1 1 0 6 characters
0 1 1 1 7 characters
1 0 0 0 8 characters
1001 to 1111 Reserved, do not use.
9.4.6 Channel Control Status Register
Register Name: CCSR 8-Bit Hex Address: $06
Register Description: Channel Control Status Register Intel Hex Address: $0C
Default Value: 0 Motorola Hex Address: $0D
Access: Read Only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
RXEN RxFloff RxFlon N/U TXEN TxFloff TxFlon N/U

This Status register stores the current state of the channel. It may be read by the host at any time. If
the host determines that a flow-control state is inappropriate, it may be cleared by enabling or
disabling the transmitter or receiver by CCR command.

118 Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Bit Description
RxEn Receiver Enable:
Bit 7 0 = Receiver is disabled.
1 = Receiver is enabled.
RxFloff Receive Flow-off:
) 0 = Normal
Bit 6 1 = The CD1865 has requested the remote to stop transmission (Send Xoff Command has been given to the
channel). This bit is reset when the CD1865 has requested the remote to restart transmission, or when the
receiver is enabled or disabled, or when the channel is reset.
RxFlon Receive Flow-on:
) 0 = Normal
Bit 5 1 = The CD1865 has requested the remote to restart character transmission (Send Xon Command has been
given to the channel). This bit is reset when the next (non-flow control) character is received, or when the
receiver is enabled or disabled, or when the channel is reset.
Bit 4 Not used
TXEn Transmitter Enable:
Bit 3 0 = Transmitter is disabled.
1 = Transmitter is enabled.
TxFloff Transmit Flow-off:
) 0 = Normal
Bit 2 1 =The CD1865 has been requested by the remote to stop transmission. This bit is reset when the CD1865
receives a request to resume transmission, or when the transmitter is enabled or disabled, or when the
channel is reset.
TxFlon Transmit Flow-on:
Bit 1 0 = Normal
1 =The CD1865 has been requested by the remote to resume transmission. This bit is reset once character
transmission is resumed, or when the transmitter is enabled or disabled, or when the channel is reset.
Bit 0 Not used
9.4.7 Receiver Bit Register
Register Name: RBR 8-Bit Hex Address: $33
Register Description: Receiver Bit Register Intel Hex Address: $66
Default Value: 21 Motorola Hex Address: $67
Access: Read Only
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved RxD Start Hunt Reserved

Datasheet

Thisregister monitors certain functions of the actual receive hardware. It should never be written to
asthis causes the CD1865 to fail. Only two of the bits are defined herein; however, the other bit
positions can change value, so these bits should be ‘ masked-out’ before testing.

Bit 6 is the sampled state of the RxD pin, as sampled at the last bit-rate clock edge. Thisis not the
actual RxD Input, as RxD cannot be sampled in real time. If no data has been received for a period
of time, thisbit still reflects the last sampled state of the line at the end of the last character. Thisis
because the line is not sampled when the CD1865 is looking for the Start bit of a new character.

119

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Bit 5 indicates whether the CD1865 islooking for a Start bit. If bit5isa‘l’, itislooking. If bit5is
a'0, itisreceiving a character.

9.4.8 Receive Time-Out Period Register
Register Name: RTPR 8-Bit Hex Address: $18
Register Description: Receive Time-Out Period Register Intel Hex Address: $30
Default Value: 5 Motorola Hex Address: $31
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Receiver Data Time-out Period

Thisregister defines the time period for two functions related to the Receive FIFO. As each
character is moved to the Receive FIFO, the Receive Timer is reloaded with the Receive Data
Time-out Period. The Receive Timer is then decremental on each tick of the Prescaler Counter. If
the Receive Timer reachesa ‘0, it causes a Receive Good Data Service Request.

Thereis another optional feature called No New Data Time-out. When enabled, the Receive Timer
generates a Receive Exception if thetimer expires after the last datais transferred from the FIFO to
the host. Thisisintended to tell the host that no more datais arriving, and to go ahead and process
the buffer.

The Receive Time-out Period register defines the time-out period for both of these functions. It
countsin time increments defined by the prescaler.

9.4.9 Receive Bit Rate Period Registers (High/Low)
Register Name: RBPRH 8-Bit Hex Address: $31
Register Description: Receive Bit Rate Period Register (High) Intel Hex Address: $62
Default Value: 0 Motorola Hex Address: $63
Access: Read/Write
Bit 7 Bit 6 Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0

Receiver Bit Rate Divisor Byte

Register Name: RBPRL 8-Bit Hex Address: $32
Register Description: Receive Bit Rate Period Register (Low) Intel Hex Address: $64
Default Value: 0 Motorola Hex Address: $65
Access: Read/Write

Bit 7 Bit 6 Bit 5 | Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0

Receiver Bit Rate Divisor Byte

120 Datasheet

n
IntGI o Intelligent Eight-Channel Communications Controller — CD1865

These two registers contain the 16-bit pre-load value for the Receive Bit Rate Counter. This count
establishes the basic Receiver Clock Rate, which must be 16 times the required Receiver Bit Rate.
Theseregistersarereset toa ‘0’ by RESET*. The period established for the 16 times Receiver
Clock Rateis equal to the RBPR 16-bit binary value times the System Clock (CLK) Period.

9.4.10 Transmit Bit Rate Period Registers (High/Low)

Register Name: TBPRH 8-Bit Hex Address: $39
Register Description: Transmit Bit Rate Period Register (High) Intel Hex Address: $72
Default Value: 0 Motorola Hex Address: $73
Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0

Transmit Bit Rate Divisor Byte

Register Name: TBPRL 8-Bit Hex Address: $3A
Register Description: Transmit Bit Rate Period Register (Low) Intel Hex Address: $74
Default Value: 0 Motorola Hex Address: $75
Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 | Bit 3 Bit 2 Bit 1 Bit 0

Transmit Bit Rate Divisor Byte

These two registers contain the 16-bit pre-load value for the Transmit Bit Rate Counter. This count
establishes the Transmitter Clock Rate, which must be 16 times the required Transmitter Bit Rate.
The precise period established for the 16 times Transmitter Clock is equal to the RBPR 16-bit
binary value times the System Clock (CLK) Period. These registers are reset to a‘0’ by RESET*.

9.4.11 Special Character Register 1
Register Name: SCHR1 8-Bit Hex Address: $09
Register Description: Special Character Register 1 Intel Hex Address: $12
Default Value: 0 Motorola Hex Address: $13
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O

Special Character 1

Thisregister storestheright-justified bit pattern for Special Character 1. Unused bitsmustbea‘0’.
During receive, this character is one of the four characters compared with the received data for
special-character recognition. If amatch occurs with one of these four characters, it is noted in the
Receiver Status FIFO entry accompanying the received character unless a double-character
compare is enabled. In this case, the Receive Status FIFO entry is not made until both characters
are compared and matched.

During transmit, this register contains the characters that are sent as a result of the Send Special
Character 1 command. If two-character sequences are enabled, Characters 1 and 3 are sent.

Datasheet 121

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

Special Character 1 defines the Xon character or the first-half of the Xon-character sequence. The
second half is Special Character register 3.

9.4.12 Special Character Register 2

Register Name: SCHR2 8-Bit Hex Address: $0A

Register Description: Special Character Register 2 Intel Hex Address: $14

Default Value: 0 Motorola Hex Address: $15

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Special Character 2
Thisregister storesthe right-justified bit pattern for Special Character 2. Unused bitsmust bea‘0’.
During receive, this character is one of the four characters compared with the received data for
special-character recognition. If amatch occurs with one of these four characters, it is noted in the
Receiver Status FIFO entry accompanying the received character unless a double-character
compare is enabled. In this case, the Receive Status FIFO entry is not made until both characters
are compared.
During transmit, this register contains the characters that are sent as aresult of the Send Special
Character 2 command. If two-character sequences are enabled, Characters 2 and 4 are sent.
Special Character 2 defines the Xoff character or the first-half of the X off-character sequence.
9.4.13 Special Character Register 3

Register Name: SCHR3 8-Bit Hex Address: $0B

Register Description: Special Character Register 3 Intel Hex Address: $16

Default Value: 0 Motorola Hex Address: $17

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Special Character 3
Thisregister storesthe right-justified bit pattern for Special Character 3. Unused bitsmust bea‘0’.
During receive, this character is one of the four characters compared with the received data for
specia character recognition. If a match occurs with one of these four characters, it is noted in the
Receiver Status FIFO entry accompanying the received character unless a double-character
compare is enabled. In this case, the Receive Status FIFO entry is not made until both characters
are compared.
During transmit, this register contains the characters that are sent as aresult of the Send Special
Character 3 command.
Special Character 3 may be the second-half of the X on-character sequence.
122

Datasheet

intel.

9.4.14

Intelligent Eight-Channel Communications Controller — CD1865

Special Character Register 4

Register Name: SCHR4

Register Description: Special Character Register 4
Default Value: 0

Access: Read/Write

8-Bit Hex Address: $0C
Intel Hex Address: $18
Motorola Hex Address: $19

Bit 7

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Special Character 4

9.4.15

Thisregister storestheright-justified bit pattern for Special Character 4. Unused bitsmust bea‘0’.
During receive, this character is one of the four characters compared with the received data for
special character recognition. If amatch occurs with one of these four characters, it is noted in the
Receiver Status FIFO entry accompanying the received character unless a double-character

compare is enabled. In this case, the Receive Status FIFO entry is not made until both characters
are compared.

During transmit, this register contains the characters that are sent as a result of the Send Special
Character 4 command.

Special Character 4 may be the second-half of the X off-character sequence.

Modem Change Register

Register Name: MCR

Register Description: Modem Change Register
Default Value: 0

Access: Read/Write

8-Bit Hex Address: $12
Intel Hex Address: $24
Motorola Hex Address: $25

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DSRchg CDchg CTSchg 0 0 0 0 0
The CD1865 sets bits in this register when it recognizes alevel change on amodem pin, as
programmed by the Modem Change Option registers. Changes detected are a cause for asserting
the Modem Service Request if corresponding Service Request Enable bits are set. Once the service
request is asserted, updatesto this register are inhibited until End Of register () iswritten at the end
of the Modem Service Request Routine. The host must clear these register bits during the service
routine.
Bit Description
Bit 7 DSR Changed: A logic ‘1’ denotes that the Data-Set-Ready Input has changed state.
Bit 6 CD Changed: A logic ‘1’ denotes that the Carrier Detect Input has changed state.
Bit 5 CTS Changed: A logic ‘1’ denotes that the Clear-to-Send Input has changed state.
Bits 4:0 Must be a ‘0.
Datasheet

123

CD1865 — Intelligent Eight-Channel Communications Controller

9.4.16

Modem Change Option Register 1

In

Register Name:

MCOR1

Register Description: Modem Change Option Register 1

Default Value: 0

Access: Read/Write

8-Bit Hex Address: $10
Intel Hex Address: $20
Motorola Hex Address: $21

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DSRzd CDzd CTSzd 0 DTRth3 DTRth2 DTRthl DTRthO
Thisregister is used to define the current state change options to be monitored.
Bit Description
Bit 7 DSRzd is a ‘1": Detect high-to-low voltage transition on DSR* Input (zero-to-one transition of DSR (MSVR)
bit).
Bit 6 CDzd is a ‘1': Detect high-to-low voltage transition on CD* Input (zero-to-one transition of CD (MSVR) bit).
Bit 5 CTSzd is a ‘1': Detect high-to-low voltage transition on CTS* Input (zero-to-one transition of CTS (MSVR)
bit).
Bit 4 Must be a ‘0'.
Defines the threshold level that causes negation of DTR* when this flow-control option is specified. Normally,
this level should be equal to or higher than the service-request level threshold as set in COR3. If it is set lower
than the service-request threshold, it defaults to the service-request threshold level.
DTRth3 DTRth2 DTRth1 DTRthO Function
0 0 0 0 Automatic DTR mode disabled
0 0 0 1 1 character
Bits 3:0 0 0 1 0 2 character
0 0 1 1 3 character
0 1 0 0 4 character
0 1 0 1 5 character
0 1 1 0 6 character
0 1 1 1 7 character
1 0 0 0 8 character

124

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

9.4.17 Modem Change Option Register 2
Register Name: MCOR2 8-Bit Hex Address: $11
Register Description: Modem Change Option Register 2 Intel Hex Address: $22
Default Value: 0 Motorola Hex Address: $23
Access: Read/Write
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DSRod CDod CTSod 0 0 0 0 0
Thisregister is used to define the current state change options to be monitored.
Bit Description
Bit 7 DSRod is a ‘1": Detect low-to-high transition on DSR* Input (one-to-zero transition DSR (MSVR) bit).
Bit 6 CDod is a ‘1’: Detect low-to-high transition on CD* Input (one-to-zero transition of CD (MSVR) bit).
Bit 5 CTSod is a ‘1": Detect low-to-high transition on CTS* Input (one-to-zero transition of CTS (MSVR) bit).
Bits 4:0 Must be a ‘0.
9.4.18 Modem Signal Value Register
Register Name: MSVR 8-Bit Hex Address: $28
Register Description: Modem Signal Value Register Intel Hex Address: $50
Default Value: 0 Motorola Hex Address: $51

Access: Read/Write

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0
DSR CD CTS N/U N/U N/U DTR RTS
Thisregister is read to determine the current input levels on the Modem Input pins. It iswritten to
supply an output value for the RTS* and DTR* pins. The register bits have the opposite polarities
from the actual states on the individual pins. Writing a‘1’ causes the pin to go to nominal zero
volts.
Bit Description
Bit 7 DSR: Current state of Data-Set-Ready Input.
Bit 6 CD: Current state of Carrier Detect Input.
Bit 5 CTS: Current state of Clear-to-Send Input.
Bits 4:2 Not used.
Bit 1 DTR: Current state of Data-Terminal-Ready Output.
Bit 0 RTS: Current state of Request-to-Send Output.
Datasheet 125

CD1865 — Intelligent Eight-Channel Communications Controller

9.4.19

Modem Signal Value Request-to-Send Register

intel.

Register Name: MSVRTS

Register Description: Modem Signal Value Request-to-Send Register
Default Value: 0
Access: Write Only

8-Bit Hex Address: $29
Intel Hex Address: $52
Motorola Hex Address: $53

Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 0 RTS
Inthe Modem Signal Value register, awrite to either RTS or DTR affects the state of the other one.
This can be a problem when the CD1865 is using one of these signalsfor flow control and the other
one needs to be used under host control. This register writes to RTS without affecting the state of
any other bits. RTSisat bit 0.
9.4.20 Modem Signal Value Data-Terminal-Ready Register

Register Name: MSVDTR
Register Description: Modem Signal Value Data Terminal Ready

Default Value: 0
Access: Write Only

8-Bit Hex Address: $2A
Intel Hex Address: $54
Motorola Hex Address: $55

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 0 0 DTR 0
Inthe Modem Signal Value register, awrite to either RTS or DTR affects the state of the other one.
This can be a problem when the CD1865 is using one of these signalsfor flow control and the other
one needs to be used under host control. This register writes to DTR without affecting the state of
any other bits. DTR is at bit 1.
Note: Before beginning any new design with this device, please contact Intel for the latest errata

126

information. See the back cover of this document for sales office locations and phone numbers.

Datasheet

intal

o Intelligent Eight-Channel Communications Controller — CD1865

10.0 Electrical Specifications
10.1 Absolute Maximum Ratings
¢ Operating ambient temperature 0°C to 70°C
¢ Storage temperature —65°C to 150°C
¢ All voltages, with respect to ground —0.5voltsto V. + 0.5 volts
* Supply voltage (V) +7.0volts
* Power dissipation 0.5 watt
Note: Stress above those listed under Absolute Maximum Ratings may cause permanent damage to the
device. Thisisastressrating only and functional operation of the device at these or any conditions
above those indicated in the operational sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
10.2 Recommended Operating Conditions
* Supply voltage (V) 5 volts+ 5%
* Operating free-air ambient temperature 0°C < T < 70°C
* System clock 33 MHz
10.3 DC Electrical Characteristics
* (@Ve = 5volts + 5%, Tp = 0°Cto 70°C
Symbol Parameter MIN MAX Units Conditions
Vi Input low voltage -0.5 0.8 \Y
ViH Input high voltage 2.0 Vee \%
VoL Output low voltage 0.4 \Y lo= 8 MA
VoH Output high voltage 2.4 Vee \% loy = -8 MA
m Input leakage current -10 10 MA 0 < Vi, < Vg
I Data bus three-state leakage current -10 10 HA 0 < Vgut < Ve
loc Open drain output leakage -10 10 HA 0 < Vout < Ve
lcc Power supply current 90 mA CLK = 33 MHz
Cin Input capacitance 10 pF
Cout Output capacitance 10 pF
Datasheet 127

n
CD1865 — Intelligent Eight-Channel Communications Controller IntGI o

10.4

10.5

10.5.1

128

Index of Timing Information

Figure Title Page
Figure 29 “Clocked Bus Interface Reset” 130
Figure 30 “Clocked Bus Interface Clocks” 131
Figure 31 “Clocked Bus Interface Read Cycle, Motorola,-Style Handshake” 131

) “Clocked Bus Interface Service Acknowledgment Cycle, Motorola,-Style
Figure 32 Handshake” 132
Figure 33 “Clocked Bus Interface Write Cycle, Motorola,-Style Handshake” 133
Figure 34 “Clocked Bus Interface Read Cycle, Intel,-Style Handshake” 134
. “Clocked Bus Interface Service Acknowledgment Cycle, Intel,-Style
Figure 35 Handshake” 135
Figure 36 “Clocked Bus Interface Write Cycle, Intel,-Style Handshake” 136
Figure 37 “Unclocked Bus Interface Read Cycle, Motorola,-Style Handshake” 139
. “Unclocked Bus Interface Service Acknowledgment Cycle, Motorola,-Style
Figure 38 Handshake” 140
Figure 39 “Unclocked Bus Interface Write Cycle, Motorola,-Style Handshake” 141
Figure 40 “Unclocked Bus Interface Read Cycle, Intel,-Style Handshake” 142
. “Unclocked Bus Interface Service Acknowledgment Cycle, Intel,-Style
Figure 41 Handshake” 143
Figure 42 “Unclocked Bus Interface Write Cycle, Intel,-Style Handshake” 144

AC Electrical Characteristics

Internally, the CD1865 is afully clocked design; however, the hardware interface to the CD1865
may be either unclocked or clocked. An unclocked interface is generally easier to implement,
especialy if the CD1865 and its host are operating at different clock speeds. A clocked interface
may be faster in some applications.

Clocked Bus Interface

Datatransfersto or from the device occur in two steps. The first step occurs during the clock-low
time. If the read/write state machine detectsthat it istime to do acycle, it acquires the internal bus.
The second step, that of actually transferring the data, occurs during the clock-high time. The cycle
is complete at the end of the clock-high time.

The read/write state machine determines that it istime to do acycle when thereisafalling edge on
the clock and both CS* and DS* are low. Thereis a specified setup time which must be met to
guarantee that the cycle begins. If this setup is not met, the cycle occurs one clock later. If the cycle
is recognized, arbitration for the internal busis done during the clock-low time. Addresses (and
data, if awrite cycle) must meet another setup time specification to the rising edge of the clock for
the actual datatransfer to occur properly during the clock-high time. In addition, the addresses
must remain valid throughout the clock-high time, as specified. If the cycle is awrite cycle, data
must remain valid as specified. If the cycleisaread cycle, datais guaranteed valid for a specified
time after the rising edge of the clock.

Datasheet

Intelligent Eight-Channel Communications Controller — CD1865

Service Acknowledge Cycles are a special case of read cycles. The service acknowledge * read’
(which returns the Global Service Request Vector value to the host) is started when the read/write
state machine detects both DS* and another internal signal derived from both ACKIN* and DS*.
There are two possible worst-case paths to consider when determining whether DS* and ACKIN*
meet the necessary setup times to guarantee recognition on a particular clock edge. The longest
path is DS*; it must propagate through a gate, an 8-bit comparator, a state machine, and another
gate before arriving at the read/write state machine. The setup time for thisis given in Table 10.

The other critical path is ACKIN*; it must pass through a state machine and a gate before arriving
at the read/write state machine. The setup time to guarantee recognition on a particular clock edge
isgivenin Table 10. Intel-style pin names are shown in { brackets}. All times are in nanoseconds,

unless otherwise specified.

Table 10. Clocked Timings (Sheet 1 of 2)

Ng;’gﬁggin Description MIN (1) MAX (1) Notes
4 §etu_p, D§*{RD*} and CS* !ow to CLK low, for read or write cycle to start 10 2
(‘ordinary’ reads and all writes)
t) Setup, DS* {RD*} low to CLK low, for service acknowledge cycle to start 15 3
(ACKIN* cycles and read cycles from acknowledge registers)
t3 Setup, ACKIN* low to CLK low for cycle to start 10
ty Setup, Address valid to CS* and DS* low 3
tg Setup, Address valid to DS* (service acknowledge cycles) 4 4
tg Setup, Write Data valid to CLK high 0
t7 Setup, R/W* {RD*, WR*} stable to DS* and CS* low (read, write cycles) 0 2,5
tg (DS* and CS*), or (RD* and CS*), or (WR* and CS*), high 5 6,7
tg Hold time, CS* low after CLK high (read, write cycles) 5 8
t10 Hold time, DS* {RD*} after valid data 0 Infinity 8
tyy Hold time, Address valid after CLK high 15 8
t1o Hold time, Write Data valid after CLK high 10
t13 Hold time, ACKIN* low after next CLK low 4 9
tia Clock Period (T k) 30 200 10
tig Clock low time 12 10
Clock high time 12 10
e Clock duty cycle (50% + 10%)
t17 Clock rise/fall time 3 11
t1s RESET pulse width (after power is good and clock is stable) 5 CI.OCk
periods
tig Data Bus out of Hi-Z after CLK low 0 12
Yo Read Data valid after CLK high 35
tr1 ACKIN* to ACKOUT* propagation delay 12
Yy ACKOUT* high after ACKIN* high 12
tr3 DS* {RD*} high to data bus three-state 0 10
toy DTACK* assert after CLK high (DTACKDLY = 0) 25
tog DTACK* assert after CLK low (DTACKDLY = 1) 20
Datasheet 129

CD1865 — Intelligent Eight-Channel Communications Controller In

Table 10. Clocked Timings (Sheet 2 of 2)

N'L:Jirgllj‘reersin Description MIN (1) MAX (1) Notes
tre DTACK* negate after DS* {RD* or WR*} negation 10
tyy A_CKOUT* assert after CS* and DS* active on register acknowledge cycle 22 13
with no match
tog DTACK* active pull-up time 14
tog ACKOUT* high after end of cycle 22
NOTES:

1. Unless otherwise noted, all values are in nanoseconds (ns).

2. The reference to DS* and CS* refers to whichever one goes active last; that is, both signals must meet the setup time
requirement.

3. Enabling the Register Acknowledge (‘regack’) feature changes the timing somewhat, even on cycles where ‘regack’ is not
being used.

4. Calculated value; guaranteed by design, but not tested.

5. For Motorola-style interface, refers to R/W*.For Intel-style interface, refers to RD* or WR* (whichever is inactive for that
cycle).

6. A cycle must positively end before another begins; that is, control signals shall return to states such that no cycle is pending
or active.

7. Guaranteed by design, but not tested.

8. During Register Based Acknowledge cycles, these signals must be held in the correct state until valid data is presented by
the device, as indicated by DTACK* going active. Note that in daisy-chain applications, the response from the chain may be
quite long due to the ACKIN*-ACKOUT* propagation delay required for the actual interrupting device to receive the select
(ACKIN*). Waiting for the active DTACK* from the chain eliminates any timing problems relating to these parameters.

9. ACKIN* must be low for at least one clock period plus setup and hold times if there is only one CD1865 in the daisy chain. If
there is more than one CD1865 in a daisy chain, ACKIN* must be low until it has rippled all the way down the chain.

10.When using the clock out (CKOUT) of one CD1865 to drive subsequent CD1865s (such as in daisy-chain environments),
CKOUT is skewed (delayed) by 3 ns from the internal clock. Therefore, on subsequent CD1865s, setup times are improved
by 3 ns and hold times are derated by 3 ns.

11.For clock periods greater than 100 ns (10 MHz or less clock), rise and fall time may be 5 ns maximum.

12.Greater than a ‘0’ by design, but not tested.

13.This is the time for ACKOUT* to assert on register acknowledge cycles. ACKOUT* asserts if the device determines the
acknowledgment is not intended for that part. If ACKOUT* asserts, the device does not drive the data bus or assert DTACK*.
These functions are left to a device further down the daisy chain that accepts the acknowledge cycle.

14.DTACK* sources current (drives ‘high’) until the voltage on the DTACK?* line is approximately 1.5 volts. Then DTACK* goes to
an ‘open-drain’ (high-impedance) state.

Figure 29. Clocked Bus Interface Reset

Vee
CLK _/—_/__/__/__/__/__/__/__/__/__/__/__
- t18 '
/
RESET* /

130 Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

Figure 30. Clocked Bus Interface Clocks

t
14

Figure 31. Clocked Bus Interface Read Cycle,
Motorola”-Style Handshake

CcD1865 / \
CLOCK

N/

DS*

/N

/ \ NEW CYCLE MAY BEGIN

t
11

\

DON'T CARE

DON'T
ADDRESS =ARe

7 N

VALID

DON'T CARE

READ DATA = = = =

DTACK*

< t

t
19

20

_<

UNDEFINED

— |

ACKIN*

ACKOUT*

29

Datasheet

131

CD1865 — Intelligent Eight-Channel Communications Controller

Figure 32. Clocked Bus Interface Service Acknowledgment Cycle,

Motorola”-Style Handsha

ke

CD1865
CLOCK

DS*

CS*

R/W*

ADDRESS

READ DATA

DTACK*

ACKIN*

ACKOUT*

[A Y
_\

__ / /

/ \ NEW CYCLE MAY BEGIN

10

11

DON'T CARE)(VALID DON'T CARE
t
20 t
19 — ™ > 23 [e—
———————————— UNDEFINED VALID)----------

t
24 —>|

t
25—»
l—

13

132

Datasheet

n
IntGI o Intelligent Eight-Channel Communications Controller — CD1865

Figure 33. Clocked Bus Interface Write Cycle,
Motorola”-Style Handshake

CD1865 / \ / \
CLOCK

—> tl t8
DS*
\ / \ NEW CYCLE MAY BEGIN
\ / \
|
tg
cs* — J/
\
tr—| |[—
RIW* DON'T CARE
t4 — ——
ADDRESS 2QNT VALID DON'T CARE
tg
<—t12—>
WRITE DATA DON'T CARE x VALID DON'T CARE
t24—> ’47 t25 —> -
DTACK* * \
tog
le— t26 -«
ACKIN*
ACKOUT*

Datasheet 133

n
CD1865 — Intelligent Eight-Channel Communications Controller Int6I®

Figure 34. Clocked Bus Interface Read Cycle,
Intel”-Style Handshake

co1ees / ./ /N

\ / \ NEW CYCLE MAY BEGIN

-\
t10 —» l—
-\

WR* 4 \ DON'T CARE

- tll >
ADDRESS 2ONT X VALID DON'T CARE
t to3
— 19 |-— -« tzo [
READ DATA = = = UNDEFINED VALID)— ---------
trs —
t24—» ’<—
DTACK* *
trg
-— t26 e

ACKIN*

ACKOUT*

134 Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

Figure 35. Clocked Bus Interface Service Acknowledgment Cycle,

Intel”-Style Handshake

CD1865
CLOCK / / \
RD* t5 < t2 > — t8
/
tg ~>(< t1o —»| e
cs* ;r \
WR* (\
t11
ADDRESS DON'T CARE VALID (DON'T CARE
to . o oL Tes R
READDATA L o o e e e e e e e e e =] —(UNDEFINED VALID ﬂ ————————
tog —>| |e—o
DTACK* o5
\ / \
\ /g
toe
ACKIN* \ fs >
\
—> U3
tyy | t
ACKOUT* \L =
Datasheet 135

n
CD1865 — Intelligent Eight-Channel Communications Controller Int6I®

Figure 36. Clocked Bus Interface Write Cycle, Intel”-Style Handshake

CD1865 / \ / \
CLOCK

WR* = 1 >l 8

Ccs* _\ ° }

—»’ <—t7

RD* / \ DON'T CARE

tg — l—
11 >
DON'T ,
ADDRESS CARE VALID DON'T CARE
ts |e— 15—
WRITE DATA DON'T CARE x VALID DON'T CARE
g 5 ‘4— —>| tyg |[«—
DTACK* \
\+\ A tog
B B |
e— 1og
ACKIN*
ACKOUT*
10.5.2 Unclocked Bus Interface

Unclocked timing diagrams represent worst-case synchronization delays. That is, they reflect the
maximum number of clock cycles required to complete the operation.

Internally, the CD1865 fully synchronizes all signals; thus, the user need not be concerned with

setup times or metastability. The vast mgjority of CD1865 designs employ an unclocked Bus
Interface.

136 Datasheet

In

Intelligent Eight-Channel Communications Controller — CD1865

All times are based on a master clock (CLK) of 15 MHz. All times are measured in nanoseconds.
Intel-style handshake signal's (where appropriate) are shown in { curly brackets} .

Table 11. Unclocked Timings (Sheet 1 of 2)

Number Description MIN1 MAX1 Notes
ty Setup time, Address to CS*, DS* {CS*, RD* or WR*} 3 2
to Setup time, R/W* to CS* or DS* 0 2
t3 Hold time, Address after CS* or DS* {CS* or RD* or WR*} 0 3,4
tg R/W* hold time after CS* and DS* 3 3,4
Delay time, DTACK* assert to valid Read Data:
tg If DTACKDLY =0 25
If DTACKDLY =1 -12
DTACK* assert after CS* or DS* {RD*} or ACKIN*
tg If DTACKDLY =0 75 2,5
If DTACKDLY =1 85
t7 Hold time, Read Data after CS* and DS*{RD*} high 1 12 3,6,7
CS* or DS* {RD*} high from DTACK* low
tg If DTACKDLY =0 25 4,4.,8,7
If DTACKDLY =1 1
tg DTACK* inactive from (CS* or ACKIN*) or DS* high 12 3,9,4
t10 DS* {RD*} high pulse width 5 4
t1n Setup time, Address to ACKIN* 10 10,11
t1o Setup time, Write Data to DS* {or WR*} low 0
t13 Hold time, Write Data after DS* {or WR*} high 0
t14 x_REQ* deassert after DTACK* asserted 2Tclk+30 12
15 Setup time, R/IW* {WR*} and CS* to ACKIN* low 0 13
t16 x_REQ* reassert delay after write to EOSRR 2Tclk+30 14,15
t17 ACKIN* assert/deassert to ACKOUT* assert/deassert prop delay 15
t1g Data bus out of high-impedance after DS* {RD*} low 3 16
t1g Setup time, Address to DS* {RD*} during acknowledge cycles 4
Datasheet 137

CD1865 — Intelligent Eight-Channel Communications Controller In

Table 11. Unclocked Timings (Sheet 2 of 2)

Number Description MIN1 MAX1 Notes
to ACKOUT* assert after_CS* and DS* {RD*} active on register 25 17
acknowledge cycles with no match
to1 DTACK* active pull-up time 18
NOTES:

1. Unless otherwise noted, all values are in nanoseconds (ns).

2. During read cycles, CS* and DS* {RD*} are gated together internally. This specification is with respect to whichever goes
active (low) last.

3. During read cycles, CS* and DS* {RD*} are gated together internally. This specification is with respect to whichever goes
inactive (high) last.

4. This specification is with respect to whichever goes inactive (high) last.

5. The values given is for 15-MHz operation. The time depends on system clock rate and the chosen DTACKDLY option. The
actual time in any case can be determined by the formula:
If DTACKDLY = 0, then the time is 1.5(Tclk) + 30 ns
If DTACKDLY =1, then the time is 2.0(Tclk) + 35 ns

6. This specification is with respect to whichever of ACKIN* and DS* {RD*} goes active (low) last.

7. The data bus is three-stated immediately after removal of DS* {RD*}. The device is guaranteed to be off the bus by the
specified maximum time. The time can be as short as the minimum time. The hardware design should ensure that the data
has been read before DS* {RD*} is removed.

4. In multiple CD1865 designs, the Interrupt Acknowledge cycle must be long enough to accommodate the ACKIN* to
ACKOUT* daisy-chain propagation delay from the first to the last CD1865. ACKIN* must remain low until after

DTACK* asserts.

8. For Acknowledge cycles, this specification refers to ACKIN* instead of CS*.

9. During Interrupt Acknowledge cycles, ACKIN* is asserted instead of CS*; CS* should remain high. Note that ACKIN* timing is
not always the same as CS*.

10.During acknowledge cycles, addresses must propagate through the Service Match Registers. If a service request is pending
on this CD1865, the match must finish before ACKIN* asserts. This is ensured by the specifications.

11.This specification is with respect to ACKIN* only.

12.This specification refers to one of Receive, Transfer, or Modem Service Request Outputs (RREQ*, TREQ*, MREQ?¥).

13.This specification is with respect to DS*. CS* and R/W* must be high before the assertion of DS* to avoid the possibility of the
CD1865 misinterpreting the cycle as a read or write.

14.This is the time required to reassert a service request if the internal conditions of the CD1865 are such that the request
should be asserted.

15.This specification refers to one of Receive, Transfer, or Modem Service Request Outputs (RREQ*, TREQ*, MREQ¥).

16.The data bus is guaranteed to become active after DS* {RD*} low and before data is valid.

17.This is the time for ACKOUT* to assert on register acknowledge cycles. ACKOUT* asserts if the part determines the
acknowledgment is not intended for that part. If ACKOUT* asserts, the part does not drive the data bus or assert DTACK*.
These functions are left to a device further down the daisy chain that accepts the acknowledge cycle.

18.DTACK* sources current (drives ‘high’) until the voltage on the DTACK* line reaches 1.5V. At that time, DTACK* switches to
an ‘open-drain’ (high-impedance) state.

138 Datasheet

n
IntGI o Intelligent Eight-Channel Communications Controller — CD1865

Figure 37. Unclocked Bus Interface Read Cycle, Motorola”-Style Handshake

— tl l—— —_— t3 ——
ADDRESS VALID X
> t2 > t4
R/W* / \ X
CS*, DS*
\ / \
\ / \
—» t18 —— — t5 t7 L
READDATA c o e e e = = = - INVALID VALD | == ——————
- tg > tg —> iy |ty
DTACK* \ }_\
\
<1l —>

ACKOUT*

Datasheet 139

CD1865 — Intelligent Eight-Channel Communications Controller

Figure 38. Unclocked Bus Interface Service Acknowledgment Cycle,
Motorola”-Style Handshake

ADDRESS

ACKIN*

ACKOUT*

R/W*
CS*

DS*

READ DATA

DTACK*

x_REQ*

VALID X
\ /
~ ly7 ~ 17
—>’ U [« — i |.7
t19 e [— tlo
\ / \
———————— ———J(INVALID VALID —————————
tg tg tg >ty e
\ / __
\
4 |

140

Datasheet

n
IntGI o Intelligent Eight-Channel Communications Controller — CD1865

Figure 39. Unclocked Bus Interface Write Cycle,
Motorola”-Style Handshake

— tl le—— — t3 le——
ADDRESS VALID X
R/W* J t ~ 1 }‘

CS* \ /

\ / \

t1o |
DS* /

/ \

[t12 — t13 -
NRITEDATA @ e e e e = VALD = | femmm e -

DTACK* = f6 - fs fo N
\
\
x_REQ* e \L

Datasheet 141

CD1865 — Intelligent Eight-Channel Communications Controller

Figure 40. Unclocked Bus Interface Read Cycle, Intel”-Style Handshake

ADDRESS VALID X
CS* b
\ / \
\ / \
tio
RD*
\ / \
\ / N
. ts le—
— tig [~ - t7
READDATA e e e e = = = - »(INVALID VALID |f=m=m == m=m=-
DTACK* ' ‘s b o |
\ _
ACKOUT* 20

142

Datasheet

intel.

Intelligent Eight-Channel Communications Controller — CD1865

Figure 41. Unclocked Bus Interface Service Acknowledgment Cycle,

Intel”-Style Handshake

ADDRESS

ACKIN*

ACKOUT*

WR*
CS*

RD*

READ DATA

DTACK*

x_REQ*

S | R S — —> 3
VALID
\ /
t17 < .
—»‘ t15 [— — ty ‘4—
tig—>| | |
\ / L
———————— ———-(INVALID VALID ————————
tg tg t tg ~—
\ —
\
4 |

Datasheet

143

CD1865 — Intelligent Eight-Channel Communications Controller

Figure 42. Unclocked Bus Interface Write Cycle,
Intel”-Style Handshake

ADDRESS VALID X
CS* > ty t3
tio s
WR*
— t12 t13 i

WRITEDATA ¢ m = = = VALD = | fmmmmemm e —m——-

DTACK* f6 g fs fo I

\ .
t |

x_REQ* 10

144 Datasheet

intel.

11.0

Package Specifications

Intelligent Eight-Channel Communications Controller — CD1865

22.95 (0.904)

Y

A

23.45 (0.923)

19.90 (0.783)

Y

A

20.10 (0.791)

13.90 (0.547)
14.10 (0.555)

Y Pin 100 —1—§

CD1865

. Pin 1 Indicator

100-Pin MQFP (JEDEC)

—-——]

| =] 0.65
F—— (0.0256)
F—D— BSC

11
- ——
)

/

L L

16.95 (0.667)
17.45 (0.687)

—

<— 1.60 (0.063) REF

0° MIN
T 7° MAX

Datasheet

NOTES:

1. Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2. Before beginning any new design with this device, please contact Intel for the latest package information.

145

CD1865 — Intelligent Eight-Channel Communications Controller

12.0

Ordering Information

intel.

146

The order number for the -pin deviceis:

SCD18651

Product line:
Communications, Data

Part number

0QCB
-l—— Revision T

Temperature range:
C = Commercial

Internal reference number —

Package type:
MQFP (metric quad flat pack)

T Contact Intel Corporation for up-to-date information on revisions.

Datasheet

intel.

Index

A
abbreviations 13
absolute maximum ratings 127
access duty cycle 84
acknowledging service requests 44
acronyms 13
addressing
Intel versus Motorola 51
unclocked versus clocked bus 52

B
bit rate constants
CLK =15MHz 50
CLK =20 MHz 50
CLK =25MHz 49
CLK =33 MHz 49
bit rate options 47, 48
bus interface
Intel versus Motorola51
unclocked versus clocked bus 52

C
cascading service 43
CD1865 initialization 84, 88
CD18XX product family
CD180 15
CD1864 15
CD1865 15
Channel registers
Channel Command 112
Channel Control Status 118
Channel Option Register 1 116
Channel Option Register 2 116
Channel Option Register 3117
Modem Change 123
Modem Change Option Register 1 124

Datasheet

Modem Change Option Register 2 125
Modem Signal Vaue 125

Modem Signal Vaue Data Termind

Ready 126

Modem Signa Vaue Request-to-Send

126
Recelve Bit Rate Period Registers (Hi
Low) 120
Receive Time-Out Period 120
Receiver Bit 119
Service Request Enable 112
Special Character Register 1 121
Special Character Register 2 122
Special Character Register 3 122
Special Character Register 4 123
Transmit Bit Rate Period Registers (Hi
Low) 121
Channel registers, listing of 95, 97
clock options
1¥ 48
2% 47
clock oscillator, external 47
clocked businterface 52, 54, 128
code sequence
interrupt 43
polled 42

D
daisy chaining 19, 27, 44, 54
device selection considerations 15

E

electrical characteristics
AC 128
DC 127

external clock oscillator 47

gh/

gh/

147

F

fair share
internal operation 31
interrupt scheme 11
priorities and 31
FIFO
access 84
Empty 35
overflow 33, 61
overrun 33, 58
pointers 27
receive 18, 19, 32, 58, 60, 61
recelve data 62
receive exception 18
receive status 32, 61
status 58, 62
timer operations 60
transmit 18, 32, 35
full interrupt
type A 36, 37
type B 36, 38
functional description 18

G

Global registers
Configuration registers
Global Service Vector 102
Modem Service Match 100
Prescaler Period (High/Low) 100
Receive Service Match 101
Service Request Configuration 98
Transmit Service Match 101
Miscellaneous registers
Globa Firmware Revision Code 98
Service Request/Interrupt Control regis-
ters
Channel Access 107
Global Service Channel Register 1 106
Global Service Channel Register 2 106
Global Service Channel Register 3 106
Modem Request Acknowledge 105
Receive Request Acknowledge 105

148

intel.

Service Request Status 103
Transmit Request Acknowledge 105
Global registers, listing of 94, 96

H

Hex address
8-bit 94
Intel 94
Motorola 94

I/O operations, basic 90
Indexed Indirect registers
End-of-Service Request 111
Receive Character Status 110
Receive Data 109
Receive Data Count 108
Transmit Data 111
Indexed Indirect registers, listing of 94, 97
initialization
CD1865 84, 88
channel 89
global 86, 89
service reguest 86
Intel addressing 51
Intel businterface 51
interfacing examples
680X 0-family processors 55
80X 86-family processors 55
VME bus 55
interfacing to the host system
full interrupt — type A 36, 37
full interrupt — type B 36, 38
polled interface 40
singleinterrupt 36, 39
software polled 37
internal block diagram 22, 46
internal operation 20, 25
internal service acknowledge 30
internal structure
background 24
foreground 24

Datasheet

intel.

interrupt and polled code sequences, compari-

son 42

interrupt service
modem 92
receive 91
transmit 92

interrupts
fair share 11
Good Data 11
vectored 11

L
listing of
Channel registers 95, 97
Global registers 94, 96
Indexed Indirect registers 94, 97
timing information 128

M

modem interrupt service 92
modem pins as input/output 35
modem signal change 35

modes
Failure 44
Flow Control 19
Idle 84
Indexed Addressing 18
Mixed 26, 37, 40, 45
Polled 93

Motorola addressing 51
Motorola bus interface 51
multiple CD1865s without cascading 44

@)
Off-Limit registers 84
operating conditions 127
operations

[/0 basic 90

interrupt response 90
ordering information 146

Datasheet

P
package specifications 145
pin information

pin assignments 17

pin diagram 16

polled code sequences and interrupt, compari-

son 42

polled interface 40
Prescaler 86

priorities and fair share 31
programming examples 88
programming registers 83

Q

quick reference register map 94

R

receive interrupt service 91
receive service requests
receive exception 33
receive Good Data 32
receive timer operation 34
receiving data 88
register description 94
register map 94
register summary 96
registers, programming
Channel 83
Global 83
Indexed Indirect 83
Off-Limit 84

S
service acknowledge
hardware-based 36
software-based 36
service request logic, implementation 28
service requests
acknowledging 44
implementing 35
interrupt operation 26

149

modem signal change 32, 35
receiving data 32, 88
transmit service requests 35
transmitting data 32, 87
types of 31
single interrupt 36, 39
software interface
choosing 26
interrupt-driven 26
polled 26
software polled 37
specification, electrical 127
state machine logic 29
system bus interface 46
system clock 46, 47
system interface considerations 47

T

theory of operation 10, 26

throughput limits, maximum 51

timing information, listing of 128

timings

clocked businterface
clocks 131
read cycle, Intel-style handshake 134
read cycle, Motorola-style handshake
131

reset 130

150

intel.

service acknowledgment cycle, Intel-
style handshake 135
service acknowledgment cycle, Motor-
ola-style handshake 132
write cycle, Intel-style handshake 136
write cycle, Motorola-style handshake
133
unclocked bus interface
read cycle, Intel-style handshake 142
read cycle, Motorola-style handshake
139
service acknowledgment cycle, Intel-
style handshake 143
service acknowledgment cycle, Motor-
ola-style handshake 140
write cycle, Intel-style handshake 144
write cycle, Motorola-style handshake
141
transmit interrupt service 92
transmit service requests 35
transmitting data 87

U
unclocked bus interface 52, 53, 136

V

vectored interrupt structure 11

Datasheet

