

SAW Components

Data Sheet B4235

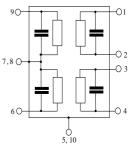
.98

- Low-loss RF filter for mobile telephone GSM 900/1800 system , receive path
- Usable passband: Filter 1 (GSM900): 35 MHz Filter 2 (GSM1800): 75 MHz
- Unbalanced to balanced operation of both filters
- Impedance transformation from 50 Ω to 150 Ω for both filters
- Suitable for GPRS class 1 to 12
- Ceramic package for Surface Mounted Technology (SMT)
- RoHS compliant

SAW Components

Data Sheet

Features


Terminals

Ni, gold-plated

Pin configuration

1, 2 Output, balanced [Filter 1] 3, 4 Output, balanced [Filter 2] 6 Input [Filter 2] 7,8 Case ground 9 Input [Filter 1] 5, 10 Case ground

Dimensions in mm, approx. weight 27 mg

Туре	Ordering code	Marking and Package according to	Packing according to
B4235	B39182-B4235-H910	C61157-A7-A142	F61074-V8174-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	- 40 / + 85	°C	
Storage temperature range	T _{stg}	– 40 / +85	°C	
DC voltage	V _{DC}	5	V	
ESD voltage	V_{ESD}^*	50	V	Machine Model, 10 pulses
Input power at				
Tx bands:				
GSM850, GSM900	$P_{\rm IN}$	15	dBm	peak power of GSM signal,
GSM1800, GSM1900				duty cycle 4:8

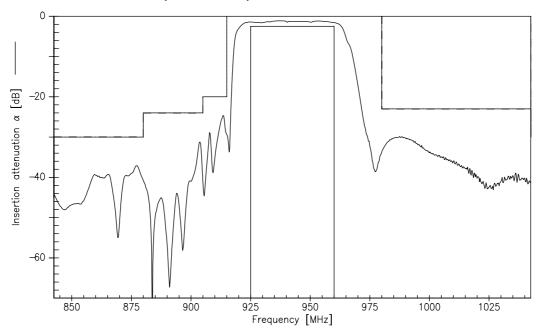
* - acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

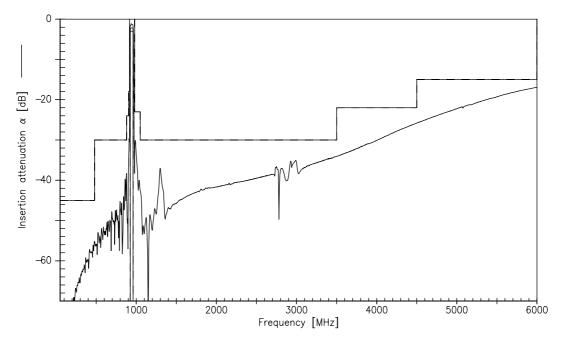
0,8

bottom view

side view

July 14, 2005


Low-Loss Dual Band Filter for Mobile Communication942,Data SheetImage: T = +25 ± 2 °CCharacteristics Filter 1 (GSM900)Operating temperature range: $Z_S = 50 \Omega$ (unbalanced)Operating temperature range: T = +25 ± 2 °CTerminating source impedance: $Z_S = 50 \Omega$ (unbalanced)Terminating load impedance: $Z_L = 150 \Omega$ (balanced) 68 nHCenter frequency f_c Maximum insertion attenuation 925,0 960,0 MHz— $925,0$ 960,0 MHz—Input VSWR925,0 960,0 MHz $925,0$ 960,0 MHz—Output amplitude balance ($ S_{31}/S_{21} $) $925,0$ 960,0 MHzOutput phase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) $925,0$ 960,0 MHzOutput thase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) $925,0$ 960,0 MHzOutput thase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) $925,0$ 960,0 MHzOutput thase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) $925,0$ 960,0 MHz	,5/1842,5 max. — 2,2	MHz
Operating temperature range: Terminating source impedance: $T = +25 \pm 2$ °C $Z_{\rm S} = 50 \ \Omega$ (unbalanced) Terminating load impedance:Terminating load impedance: $Z_{\rm L} = 150 \ \Omega$ (balanced) 68 nHCenter frequency $f_{\rm c}$ —925,0 $Maximum$ insertion attenuation $925,0$ $\alpha_{\rm max}$ $925,0$ —Maximum insertion attenuation $925,0$ $\alpha_{\rm max}$ $925,0$ —Maximum insertion attenuation $925,0$ $\alpha_{\rm max}$ $925,0$ —Maximum insertion attenuation 		MHz
Terminating source impedance: $Z_{\rm S} = 50 \Omega$ (unbalanced)Terminating load impedance: $Z_{\rm L} = 150 \Omega$ (balanced) 68 nHCenter frequency $f_{\rm C}$ $-$ 942,5Maximum insertion attenuation 925,0 960,0 MHz $\alpha_{\rm max}$ $ -$ Amplitude ripple (p-p) 925,0 960,0 MHz $\Delta \alpha$ $ -$ Number of the second sec		MHz
Center frequency f_c — 942,5 Maximum insertion attenuation α_{max} — 1,8 925,0 960,0 MHz — 1,8 Amplitude ripple (p-p) $\Delta \alpha$ — 0,6 Input VSWR 925,0 960,0 MHz — 0,6 Input VSWR 925,0 960,0 MHz — 1,9 Output VSWR 925,0 960,0 MHz — 1,9 Output vSwR 925,0 960,0 MHz — 1,9 Output amplitude balance ($ S_{31}/S_{21} $) 925,0 960,0 MHz -2,0 — Output phase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) 925,0 960,0 MHz -10,0 —		MHz
Maximum insertion attenuation α_{max} - 1,8 Maximum insertion attenuation $925,0 \dots 960,0 \text{ MHz}$ - 1,8 Amplitude ripple (p-p) $\Delta \alpha$ - 0,6 Input VSWR 925,0 \dots 960,0 MHz - 0,6 Input VSWR 925,0 \dots 960,0 MHz - 1,9 Output VSWR 925,0 \dots 960,0 MHz - 1,9 Output amplitude balance ($ S_{31}/S_{21} $) 925,0 \dots 960,0 MHz - - 925,0 \dots 960,0 MHz - - - - Output amplitude balance ($ S_{31}/S_{21} $) 925,0 \dots 960,0 MHz - - 925,0 \dots 960,0 MHz - - - -		MHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		dB
925,0 960,0 MHz — 1,9 Output VSWR 925,0 960,0 MHz — 1,9 Output amplitude balance ($ S_{31}/S_{21} $) 925,0 960,0 MHz - 1,9 Output amplitude balance ($ S_{31}/S_{21} $) 925,0 960,0 MHz -2,0 — Output phase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) 925,0 960,0 MHz -10,0 —	1,2	dB
Output VSWR 925,0 960,0 MHz - 1,9 Output amplitude balance ($ S_{31}/S_{21} $) 925,0 960,0 MHz -2,0 - Output phase balance ($\phi(S_{31})-\phi(S_{21})+180^\circ$) 925,0 960,0 MHz -10,0 -		
925,0 960,0 MHz — 1,9 Output amplitude balance ($ S_{31}/S_{21} $) 925,0 960,0 MHz -2,0 — Output phase balance ($\phi(S_{31})-\phi(S_{21})+180^{\circ}$) 925,0 960,0 MHz -10,0 —	2,1	
925,0 960,0 MHz -2,0 Output phase balance ($\phi(S_{31}) - \phi(S_{21}) + 180^{\circ}$) 925,0 960,0 MHz -10,0	2,1	
Output phase balance ($\phi(S_{31})-\phi(S_{21})+180^{\circ}$) 925,0 960,0 MHz -10,0 —		
925,0 960,0 MHz -10,0 —	2,0	dB
Absolute attenuation data	10,0	degre
abs		
10,0 480,0 MHz 45,0 53,0	—	dB
480,0 880,0 MHz 30,0 38,0	—	dB
880,0 905,0 MHz 24,0 27,0	_	dB
905,0 915,0 MHz 20,0 25,0	—	dB
980,0 1050,0 MHz 23,0 30,0	—	dB
1050,03500,0 MHz 30,0 34,0	—	dB
3500,04500,0MHz22,026,04500,06000,0MHz15,017,0	_	dB dB

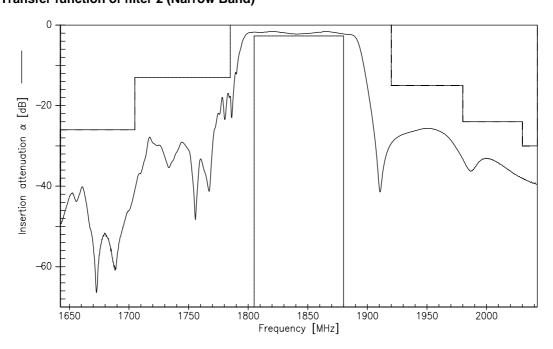

SAW Components					E	34235	
Low-Loss Dual Band Filter for Mobile Communication 942,5/						/1842,5 MHz	
Data Sheet	<u>_</u>						
Characteristics Filter 1 (GSM900)							
Operating temperature range: Terminating source impedance: Terminating load impedance:	Z_{S}	= 50 9	$\Omega +75^{\circ} C$ Ω (unbalar Ω (balance	nced) ed) 68 nH			
			min.	typ.	max.		
Center frequency		f _c		942,5		MHz	
Maximum insertion attenuation 925,0 96	60,0 MHz	α_{\max}	_	1,8	2,5	dB	
Amplitude ripple (p-p) 925,0 96	60,0 MHz	Δα	_	0,9	1,5	dB	
Input VSWR							
925,0 96 Output VSWR	60,0 MHz	-	_	1,9	2,1		
925,0 96	60,0 MHz			1,9	2,1		
Output amplitude balance (S ₃₁ /S ₂₁)	1						
925,0 96	60,0 MHz		-2,5		2,5	dB	
Output phase balance $(\phi(S_{31})-\phi(S_{21}))$)+180°)						
925,0 96	60,0 MHz		-12,0	_	12,0	degree	
Absolute attenuation		α_{abs}					
10,0 48	80,0 MHz		45,0	50,0		dB	
480,0 88		<u>.</u>	30,0	38,0	—	dB	
880,0 90	05,0 MHz	<u>.</u>	24,0	27,0	—	dB	
905,0 91	5,0 MHz	<u>:</u>	11,0	18,0	—	dB	
980,0105			23,0	30,0	—	dB	
1050,0350			30,0	34,0	—	dB	
3500,0450			22,0	26,0	—	dB	
4500,0600	0,0 MHz	<u>.</u>	15,0	17,0	—	dB	

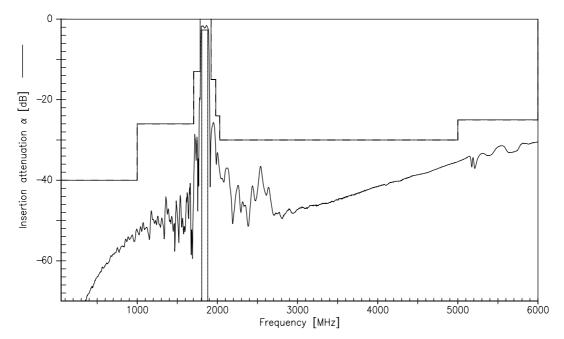
Transfer function of filter 1 (Narrow Band)

Transfer function of filter 1 (Wide Band)

5

Jote Chaot		ation 942,5/1842,5 MHz					
Data Sheet		=N					
Characteristics Filte	er 2(GSM1800)						
Operating temperatur Terminating source ir Terminating load imp	mpedance:	Z_{S}	= +25 ± = 50 Ω = 150 Ω	2 (unbalar	nced) ed) 12.0 n	Н	
				min.	typ.	max.	
Center frequency			f _c	_	1842,5	_	MHz
Maximum insertion	attenuation 1805,01880,0	MHz	α_{max}	_	2,4	2,7	dB
Amplitude ripple (p-	p) 1805,01880,0	MHz	Δα	_	1,2	1,5	dB
Input VSWR	4005.0 4000.0	N 41 1-			2.4		
Output VSWR	1805,0 1880,0	MHz		—	2,4	2,6	
	1805,01880,0	MHz		_	2,2	2,4	
Output amplitude ba	alance (S ₃₁ /S ₂₁) 1805,01880,0	MHz		-1,5	_	1,5	dB
Output phase balan	ce (φ(S ₃₁)–φ(S ₂₁)+180 1805,01880,0			-10,0	_	10,0	degree
Absolute attenuatio	n		α_{abs}				
	10,01000,0	MHz		40,0	50,0	—	dB
	1000,01705,0	MHz		26,0	28,0	—	dB
	1705,01785,0	MHz		13,0	17,0	—	dB
	1920,01980,0	MHz		15,0	24,0	—	dB
	1980,02030,0			24,0	28,0	—	dB
	2030,05000,0	MHz		30,0 25,0	34,0 30,0	_	dB


SAW Components						B4235
Low-Loss Dual Band Filter for Mobi	94	942,5/1842,5 MHz				
Data Sheet	SM					
Characteristics Filter 2 (GSM1800)						
Operating temperature range:	т	= -20 to	o +75° C			
Terminating source impedance:			Ω (unbalar	nced)		
Terminating load impedance:				ed) 12.0 n	н	
			min.	typ.	max.	
Center frequency		f _c	_	1842,5		MHz
Maximum insertion attenuation		α_{max}				
1805,01880,0	MHz		—	2,4	2,7	dB
Amplitude ripple (p-p)	N 41 1-	Δα		4.5	4.0	
1805,01880,0	MHz		_	1,5	1,8	dB
nput VSWR						
1805,01880,0	MHz		_	2,4	2,6	
Output VSWR						
1805,01880,0	MHz		—	2,2	2,4	
Output amplitude balance (S_{31}/S_{21})			1 5		4 5	dD
1805,01880,0	MHz		-1,5	_	1,5	dB
Output phase balance $(\phi(S_{31})-\phi(S_{21})+18)$	30°)					
1805,01880,0			-10,0	_	10,0	degree
Absolute attenuation		$lpha_{abs}$				
10,01000,0			40,0	50,0	—	dB
1000,01705,0			26,0	28,0	—	dB
1705,01785,0 1920,01980,0			10,0 15,0	17,0 24,0		dB dB
1920,01980,0			15,0 24,0	24,0		dВ
2030,05000,0			24,0 30,0	34,0	_	dB
5000,06000,0			25,0	30,0		dB


Data Sheet

SMD

Transfer function of filter 2 (Narrow Band)

Transfer function of filter 2 (Wide Band)

8

SAW Components		B4235
Low-Loss Dual Band F	ilter for Mobile Communication	942,5/1842,5 MHz
Data Sheet	SMD	

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW COM WT PD P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.

