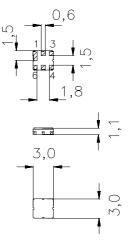


Siemens Matsushita Components

# SAW Components Low Loss Filter for Mobile Communication


B4114 862,00 MHz

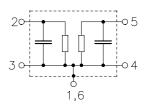
# Data Sheet

### Features

Ceramic package DCC6C

- Low-loss RF cleanup filter for mobile telephone PCS systems, transmit path
- Usable passband 30 MHz
- High nearby selectivity
- Ceramic package for Surface Mounted Technology (SMT)




Terminals

• Ni, gold-plated

## Dimensions in mm, approx. weight 0,05 g

## **Pin configuration**

| Input           |
|-----------------|
| Input - ground  |
| Output          |
| Output - ground |
| To be grounded  |
|                 |



| Туре  | Ordering code     | Marking and Package according to | Packing<br>according to |
|-------|-------------------|----------------------------------|-------------------------|
| B4114 | B39861-B4114-U410 | C61157-A7-A67                    | F61074-V8088-Z000       |

Electrostatic Sensitive Device (ESD)

## **Maximum ratings**

| Operable temperature range | Т                | - 30 / + 85 | °C  |                              |
|----------------------------|------------------|-------------|-----|------------------------------|
| Storage temperature range  | T <sub>stg</sub> | – 40 / + 85 | °C  |                              |
| DC voltage                 | V <sub>DC</sub>  | 0           | V   |                              |
| Source power               | Ps               | 3           | dBm | source impedance 50 $\Omega$ |

Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 1 of 8



**S+M** Siemens Matsushita Components

# SAW Components Low Loss Filter for Mobile Communication

Data Sheet

#### **Characteristics**

| Operating temperature range:  | $T = -30 \text{ to } +85^{\circ}\text{C}$ |
|-------------------------------|-------------------------------------------|
| Terminating source impedance: | $Z_{\rm S}$ = 50 $\Omega$                 |
| Terminating load impedance:   | $Z_{L} = 50 \Omega$                       |

|     |                                        | min.                                                                                                                                                                 | typ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | max.                                                   |                                                        |
|-----|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
|     | f <sub>c</sub>                         | —                                                                                                                                                                    | 862,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        | MHz                                                    |
| MHz | $\alpha_{\text{max}}$                  | _                                                                                                                                                                    | 2,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,4                                                    | dB                                                     |
| MHz | Δα                                     | _                                                                                                                                                                    | 1,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,7                                                    | dB                                                     |
| MHz |                                        | _                                                                                                                                                                    | 2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,6                                                    |                                                        |
| MHz |                                        | —                                                                                                                                                                    | 2,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,6                                                    |                                                        |
|     | $\alpha_{\text{rel}}$                  |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                        |
|     |                                        |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                      | dB                                                     |
|     |                                        | 16,0<br>23,0                                                                                                                                                         | 19,0<br>26,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                      | dB<br>dB                                               |
|     | MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz | <ul> <li>MHz</li> <li>MHz</li> <li>Δα</li> <li>MHz</li> <li>MHz</li> <li>MHz</li> <li>MHz</li> <li>MHz</li> <li>MHz</li> <li>α<sub>rel</sub></li> <li>MHz</li> </ul> | $\begin{array}{c c} f_{c} & - \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |



Siemens Matsushita Components

# SAW Components Low Loss Filter for Mobile Communication

Data Sheet

## Characteristics of 2 filters in cascade 1)

| Operating temperature range:  | Т       | = -30 to +85°C |
|-------------------------------|---------|----------------|
| Terminating source impedance: | $Z_{S}$ | = 50 Ω         |
| Terminating load impedance:   | $Z_{L}$ | = 50 Ω         |

|                                                           |                | min. | typ.  | max. |     |
|-----------------------------------------------------------|----------------|------|-------|------|-----|
| Center frequency                                          | f <sub>c</sub> | _    | 862,0 |      | MHz |
| Maximum insertion attenuation                             | $\alpha_{max}$ |      |       |      |     |
| 847,0 877,0                                               | MHz            | _    | 5,5   | 7,0  | dB  |
| Amplitude ripple (p-p)                                    | Δα             |      |       |      |     |
| 847,0 877,0                                               | MHz            | _    | 2,1   | 3,6  | dB  |
| 847,0 877,0                                               | MHz 2)         | -    | 2,1   | 3,0  | dB  |
| Input VSWR                                                |                |      |       |      |     |
| 847,0 877,0                                               | MHz            | _    | 2,8   | 3,5  |     |
| Output VSWR                                               |                |      |       |      |     |
| . 847,0 877,0                                             | MHz            | _    | 2,8   | 3,5  |     |
| <b>Relative attenuation</b> (relative to $\alpha_{max}$ ) | $\alpha_{rel}$ |      |       |      |     |
| 0,0 820,0                                                 | MHz            | 60,0 | 75,0  |      | dB  |
| 820,0 838,0                                               | MHz            | 31,0 | 34,0  |      | dB  |
| 905,02200,0                                               | MHz            | 35,0 | 40,0  |      | dB  |
|                                                           |                |      |       |      |     |

<sup>1)</sup> Cascaded filters matched to each other with parallel coupling coil of 10 nH.

<sup>2)</sup> In temperature range -20 to  $+85^{\circ}$ C.



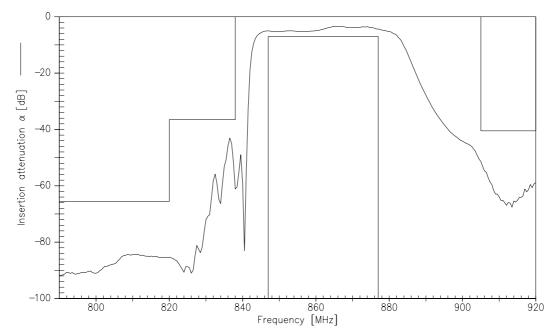
Siemens Matsushita Components

# SAW Components Low Loss Filter for Mobile Communication

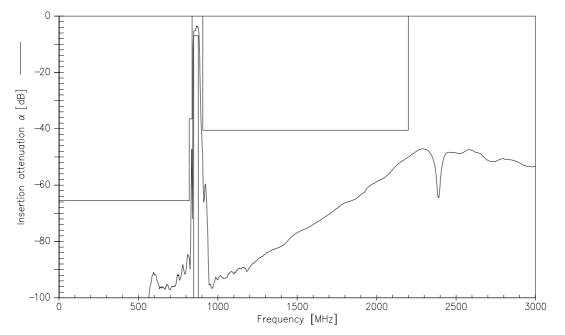
Data Sheet

## Characteristics of 2 filters in cascade 1)

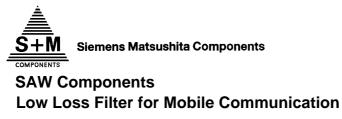
| Operating temperature range:  | Т       | = -30 to +85°C |
|-------------------------------|---------|----------------|
| Terminating source impedance: | $Z_{S}$ | = 50 Ω         |
| Terminating load impedance:   | $Z_{L}$ | = 50 Ω         |


|                                                           |                | min. | typ.  | max. |     |
|-----------------------------------------------------------|----------------|------|-------|------|-----|
| Center frequency                                          | f <sub>c</sub> | _    | 862,0 | _    | MHz |
| Maximum insertion attenuation                             | $\alpha_{max}$ |      |       |      |     |
| 847,0 877,0                                               | MHz            | _    | 5,5   | 7,0  | dB  |
| Amplitude ripple (p-p)                                    | Δα             |      |       |      |     |
| 847,0 877,0                                               | MHz            | _    | 2,1   | 3,6  | dB  |
| 847,0 877,0                                               | MHz 2)         | _    | 2,1   | 3,0  | dB  |
| Input VSWR                                                |                |      |       |      |     |
| 847,0 877,0                                               | MHz            | -    | 3,9   | 4,4  |     |
| Output VSWR                                               |                |      |       |      |     |
| 847,0 877,0                                               | MHz            | _    | 3,9   | 4,4  |     |
| <b>Relative attenuation</b> (relative to $\alpha_{max}$ ) | $\alpha_{rel}$ |      |       |      |     |
| 0,0 820,0                                                 | MHz            | 60,0 | 75,0  | _    | dB  |
| 820,0 838,0                                               | MHz            | 31,0 | 34,0  | _    | dB  |
| 905,02200,0                                               | MHz            | 35,0 | 40,0  | _    | dB  |
|                                                           |                |      |       |      |     |

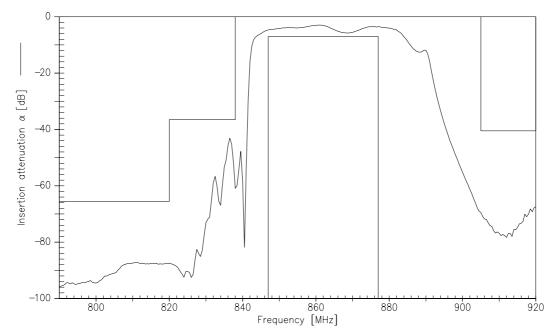
<sup>1)</sup> Cascaded filters directly connected to each other without matching network.


<sup>2)</sup> In temperature range -20 to  $+85^{\circ}$ C.

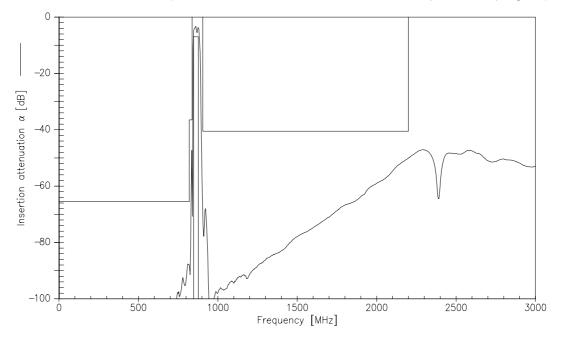



Measured transfer function(2 filters B4114 in cascade with 10nH parallel coupling coil):





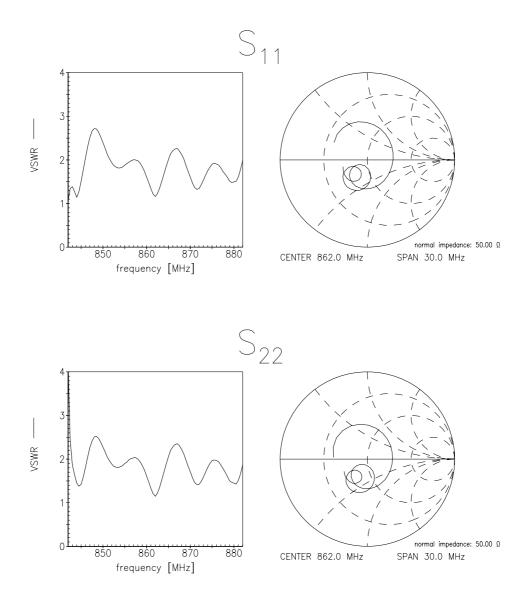




Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 5 of 8



Measured transfer function(2 filters B4114 in cascade without parallel coupling coil):

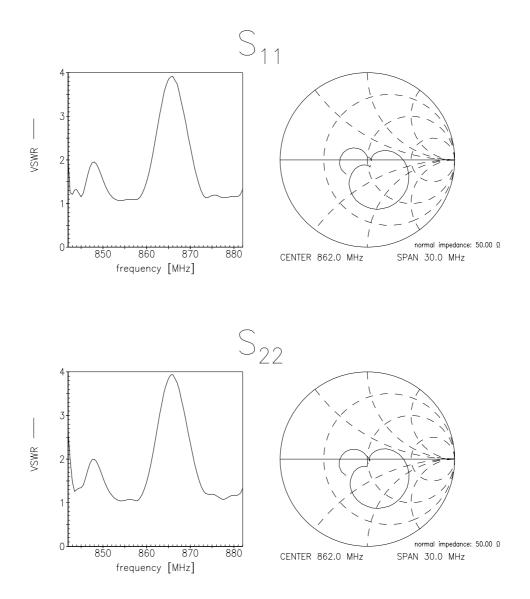



Measured transfer function(wideband, 2 filters B4114 in cascade without parallel coupling coil):



Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 6 of 8




Reflection functions(2 filters B4114 in cascade with 10nH parallel coupling coil):



Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 7 of 8



Reflection functions(2 filters B4114 in cascade without parallel coupling coil):



Preliminary format of data sheet. Terms of delivery and rights to change design reserved. Page 8 of 8