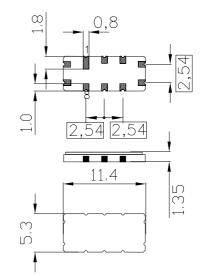


SAW Components

Data Sheet B4943

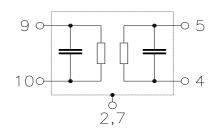

SAW Components		B4943
Low-Loss Filter for Mob	ile Communication	85,38 MHz
Data Sheet	SMD	

Features

- IF filter for mobile telephone
- Channel selection in CDMA systems
- Balanced or unbalanced operation possible
- High rejection, small size
- Low amplitude ripple
- Filter surface passivated
- Package for Surface Mounted Technology (SMT)

Terminals

Ni, gold plated



SMD ceramic package QCC10C

Dimensions in mm, approx. weight 0,24 g

Pin configuration

10	Input
9	Balanced input or input ground
5	Output
4	Balanced output or output ground
2, 7	Case ground
1, 3, 6, 8	Not connected

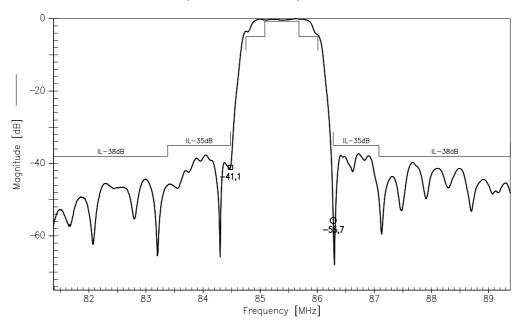
Туре	Ordering code	Marking and Package	Packing	
		according to	according to	
B4943	B39850-B4943-U910	C61157-A7-A73	F61074-V8105-Z000	

Electrostatic Sensitive Device (ESD)

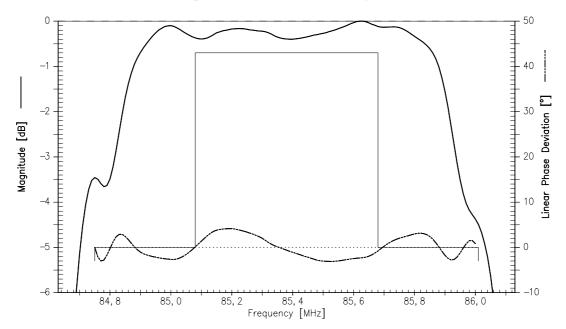
Maximum ratings

Operable temperature range	Т	- 40/+ 85	°C
Storage temperature range	T _{stg}	- 40/+ 85	°C
DC voltage	V _{DC}	13	V
Source power	Ps	10	dBm

2



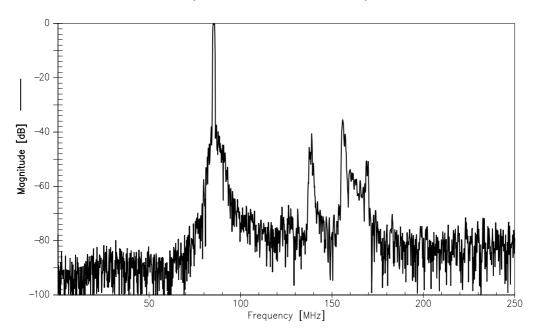
SAW Components				B4943	
Low-Loss Filter for Mobile Communication				85,38 MHz	
Data Sheet SMD					
Characteristics					
Operating temperature range: $T = -35^{\circ}C \dots +85^{\circ}C$ Terminating source impedance: $Z_{\rm S} = 1975 \Omega \parallel 340 \text{ nH}$ Terminating load impedance: $Z_{\rm L} = 1600 \Omega \parallel 350 \text{ nH}$					
	min.	typ.	max.		
Nominal frequency f _N		85,38	—	MHz	
	_	10,0	11,5	dB	
Amplitude ripple $\Delta \alpha$ $f_{\rm N} = 0,3$ MHz $f_{\rm N} = 0,3$ MHz	_	0,5	0,8	dB	
Phase linearity (rms deviation) $f_{\rm N} = 0,63$ MHz $f_{\rm N} = 0,63$ MHz	_	2,5	3,5	o	
$\begin{array}{l} \mbox{Relative attenuation (relative to α_{min}) $ α_{rel} $ $f_N \pm 0.63$ MHz $ $ $f_N \pm 0.63$ MHz $ $ $ $f_N \pm 0.63$ MHz $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	_	4,0	5,0	dB	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	35 35 38 38 35 35 38	41 55 39 44 		dB dB dB dB dB dB dB dB dB	

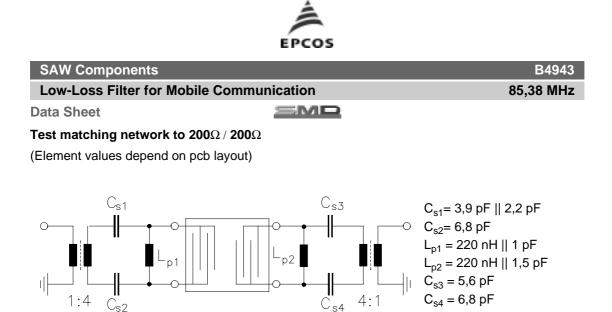


SAW Components		B4943	
Low-Loss Filter for Mo	bile Communication	85,38 MHz	
Data Sheet	SMD		

Normalized transfer function (balanced/balanced)

Normalized transfer function (passband, balanced/balanced):




4

SAW Components	B4943		
Low-Loss Filter for Mo	bile Communication	85,38 MHz	
Data Sheet	SMD		

Normalized transfer function (wideband, balanced/balanced)

Published by EPCOS AG Surface Acoustic Wave Components Division, OFW E MF P.O. Box 80 17 09, D-81617 München

© EPCOS AG 1999. All Rights Reserved.

C=2

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

