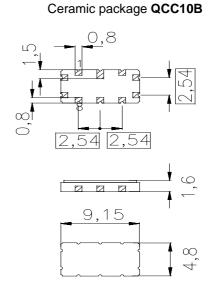


SAW Components

Data Sheet B4812

SAW Components B4812
Low-Loss Filter 246,01 MHz

Data Sheet



FeaturesLow-loss IF filter for mobile telephone

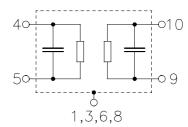
- Channel selection in GSM systems
- Hermetically sealed ceramic SMD package
- Balanced and unbalanced operation possible

Terminals

Gold-plated Ni

Dimensions in mm, approx. weight 0,23 g

Pin configuration


4 Input

5 Input ground or balanced input

9 Output

10 Output ground or balanced output

1, 3, 6, 8 Case – ground 2, 7 Ground

Туре	Ordering code	Marking and Package according to	Packing according to		
B4812	B39251-B4812-Z710	C61157-A7-A49	F61074-V8127-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

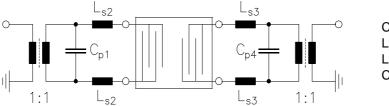
Operable temperature range	T	- 25/+ 85	°C
Storage temperature range	$T_{\rm stg}$	– 25/+ 85	°C
DC voltage	$V_{\rm DC}$	0	V
Source power	P_{s}	10	dBm

SAW Components B4812

Low-Loss Filter 246,01 MHz

Data Sheet

Characteristics


Reference temperature: $T = 25 \,^{\circ}\text{C}$

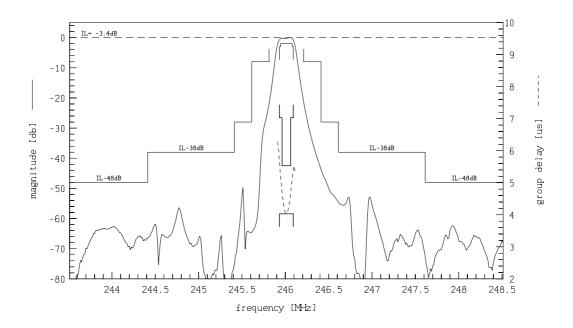
 $Z_{\rm S} = 700 \, {\rm Ohm} \, \parallel -2.6 \, {\rm pF}$ $Z_{\rm L} = 700 \, {\rm Ohm} \, \parallel -2.6 \, {\rm pF}$ Terminating source impedance: Terminating load impedance:

		min.	typ.	max.	
Nominal frequency	f _N	_	246,01	_	MHz
Minimum insertion attenuation	α_{min}	2,0	3,2	5,0	dB
(including loss in matching coils)					
Amplitude ripple (p-p)	$\Delta \alpha$				
$f_{\rm N}$ - 67,5 kHz $f_{\rm N}$ + 67,5 kHz			0,6	2,0	dB
$f_{\rm N}$ - 80,0 kHz $f_{\rm N}$ + 80,0 kHz			0,7	3,0	dB
Group delay ripple (p-p)	Δau				
$f_{\rm N}$ - 50,0 kHz $f_{\rm N}$ + 50,0 kHz			0,5	1,5	μs
f_{N} - 80,0 kHz f_{N} + 80,0 kHz			1,2	3,0	μs
Relative attenuation (relative to α_{min})	α_{rel}				
f_{N} - 25,00 MHz f_{N} - 3,00 MHz		50	60	_	dB
f_{N} - 3,00 MHz f_{N} - 1,60 MHz		48	60	_	dB
f_{N} - 1,60 MHz f_{N} - 0,60 MHz		38	50	_	dB
f_{N} - 0,60 MHz f_{N} - 0,40 MHz		28	40	_	dB
f_{N} - 0,40 MHz f_{N} - 0,20 MHz		8	14	_	dB
$f_{\rm N}$ + 0,20 MHz $f_{\rm N}$ + 0,40 MHz		8	14	_	dB
$f_{\rm N}$ + 0,40 MHz $f_{\rm N}$ + 0,60 MHz		28	40	_	dB
$f_{\rm N}$ + 0,60 MHz $f_{\rm N}$ + 1,60 MHz		38	50	_	dB
$f_{\rm N}$ + 1,60 MHz $f_{\rm N}$ + 3,00 MHz		48	60	_	dB
f_{N} + 3,00 MHz f_{N} + 25,00 MHz		50	60	_	dB
Impedance at f _N					
Input: $Z_{IN} = R_{IN} \parallel C_{IN}$		_	700 2,6	_	$\Omega \parallel pF$
Output: $Z_{OUT} = R_{OUT} \parallel C_{OUT}$		_	700 2,6	_	$\Omega \parallel pF$
Temperature coefficient of frequency 1)	TC_{f}	_	- 0,036	_	ppm/K ²
Frequency inversion point	T_0	_	25	_	°C

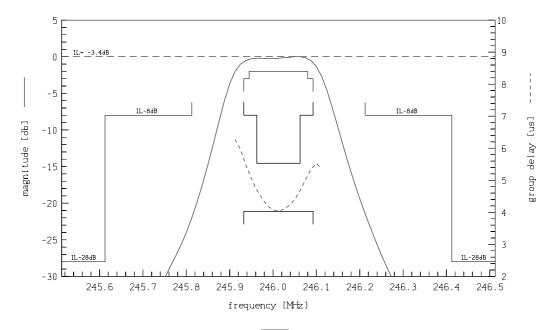
¹⁾ Temperature dependence of f_c : $f_c(T) = f_c(T_0)(1 + TC_f(T - T_0)^2)$

Test matching network to 50 Ω (element values depend on PCB layout):

 $\begin{array}{llll} C_{p1} & = & 1,8 & pF \\ L_{s2} & = & 56 & nH \\ L_{s3} & = & 56 & nH \\ C_{p4} & = & 1,8 & pF \end{array}$


SAW Components

Low-Loss Filter


246,01 MHz

Data Sheet

Transfer function:

Transfer function (pass band):

SAW Components B4812 **Low-Loss Filter** 246,01 MHz

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC WT P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2003. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

Data Sheet

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.