EPCOS

SAW Components

Data Sheet B5035

Data Sheet

SAW Components

Low-Loss Filter 208,0 MHz

Data Sheet

Features

- IF low-loss filter for W-CDMA base station
- Usable bandwidth $3,84 \mathrm{MHz}$
- Balanced or unbalanced operation possible
- Temperature stable
- Ceramic SMD package

Terminals

- Gold plated

Ceramic package QCC10B

Dimensions in mm, appr. weight $0,23 \mathrm{~g}$

Pin configuration

10,9	Input
5,4	Output
$1,3,6,8$	Case ground
2,7	To be grounded

Type	Ordering code	Marking and Package according to	Packing according to
B5035	B39211-B5035-Z710	C61157-A7-A49	F61074-V8172-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	$-40 /+85$	${ }^{\circ} \mathrm{C}$	
Storage temperature range	T_{stg}	$-40 /+85$	${ }^{\circ} \mathrm{C}$	
DC voltage	V_{DC}	0	V	
Source power	P_{s}	0	dBm	

SAW Components

Low-Loss Filter
208,0 MHz

Data Sheet

Characteristics

Operating temperature range:
Terminating source impedance:
Terminating load impedance:
$T=+5 \ldots+75^{\circ} \mathrm{C}$
$Z_{S}=200 \Omega$ balanced and matching network
$Z_{\mathrm{L}}=200 \Omega$ balanced and matching network

		min.	typ.	max.	
Nominal frequency	f_{N}	-	208,0	-	MHz
Minimum insertion attenuation	$\alpha_{\text {min }}$	-	11	13	dB
Passband width $\quad \alpha_{\text {rel }} \leq 1 \mathrm{~dB}$	$B_{1 \mathrm{~dB}}$	-	4,2	-	MHz
Amplitude ripple (p-p) $\quad f_{\mathrm{N}} \pm 1,92 \mathrm{MHz}$	$\Delta \alpha$	-	0,6	1,0	dB
Phase ripple (p-p) $\quad f_{\mathrm{N}} \pm 1,92 \mathrm{MHz}$	$\Delta \varphi$	-	5	-	-
Phase ripple (rms) $\quad f_{\mathrm{N}} \pm 1,92 \mathrm{MHz}$	$\Delta \varphi$	-	1,1	1,5	-
Error vector magnitude	EVM	-	2,6	6,0	\%
Absolute group delay (mean within $f_{\mathrm{N}} \pm 1,92 \mathrm{MHz}$)	$\tau_{\text {mean }}$	1,129	1,134	1,139	$\mu \mathrm{s}$
Relative attenuation (relative to $\alpha_{\text {min }}$)	$\alpha_{\text {rel }}$				
$f_{\mathrm{N}} \pm 2,6 \mathrm{MHz} \quad \ldots \quad \mathrm{f}_{\mathrm{N}} \pm 2,8 \mathrm{MHz}$		17	20 30	-	dB
$\mathrm{f}_{\mathrm{N}} \pm \quad 2,8 \mathrm{MHz}$... $\mathrm{f}_{\mathrm{N}} \pm 3,3 \mathrm{MHz}$		30	35	-	dB
$\mathrm{f}_{\mathrm{N}} \pm 3,3 \mathrm{MHz} \quad \ldots \quad \mathrm{f}_{\mathrm{N}} \pm 20 \mathrm{MHz}$		$40^{1)}$	45	-	dB
$\mathrm{f}_{\mathrm{N}} \pm \quad 20 \mathrm{MHz}$... $\mathrm{f}_{\mathrm{N}} \pm 28 \mathrm{MHz}$		45	50	-	dB
$\mathrm{f}_{\mathrm{N}} \pm \quad 28 \mathrm{MHz} \quad \ldots \mathrm{f}_{\mathrm{N}} \pm 60 \mathrm{MHz}$		$55^{2)}$	60	-	dB
Adjacent channel selectivity	ACS				
$5,0 \mathrm{MHz}$ offset of carrier		45	49	-	dB
Input IP3		40	-	-	dBm
Temperature coefficient of frequency ${ }^{3}$)	$T C_{\text {f }}$	-	-0,036	-	ppm/K2
Turnover temperature	T_{0}	-	20	-	${ }^{\circ} \mathrm{C}$

[^0]
SAW Components

Low-Loss Filter
208,0 MHz
Data Sheet

Characteristics

Operating temperature range:
Terminating source impedance:
Terminating load impedance:
$T=-40 \ldots+85^{\circ} \mathrm{C}$
$Z_{S}=200 \Omega$ balanced and matching network
$Z_{\mathrm{L}}=200 \Omega$ balanced and matching network

		min.	typ.	max.	
Nominal frequency	f_{N}	-	208,0	-	MHz
Minimum insertion attenuation	$\alpha_{\text {min }}$	-	11	13,2	dB
Passband width $\quad \alpha_{\text {rel }} \leq 1 \mathrm{~dB}$	$B_{1 d B}$	-	4,2	-	MHz
Amplitude ripple (p-p) $\quad f_{\mathrm{N}} \pm 1,92 \mathrm{MHz}$	$\Delta \alpha$	-	0,6	1,2	dB
Phase ripple (p-p) $\quad f_{N} \pm 1,92 \mathrm{MHz}$	$\Delta \varphi$	-	5	-	
Phase ripple (rms) $\quad f_{\mathrm{N}} \pm 1,92 \mathrm{MHz}$	$\Delta \varphi$	-	1,1	1,5	-
Error vector magnitude	EVM	-	2,6	6,0	\%
Absolute group delay (mean within $f_{\mathrm{N}} \pm 1,92 \mathrm{MHz}$)	$\tau_{\text {mean }}$	1,129	1,134	1,139	$\mu \mathrm{s}$
Relative attenuation (relative to $\alpha_{\text {min }}$) $\mathrm{f}_{\mathrm{N}} \pm 2,515 \mathrm{MHz} \quad \ldots \quad \mathrm{f}_{\mathrm{N}} \pm 2,6 \mathrm{MHz}$	$\alpha_{\text {rel }}$	17	20	-	dB
$\mathrm{f}_{\mathrm{N}} \pm 2,6 \mathrm{MHz} \quad \ldots \quad \mathrm{f}_{\mathrm{N}} \pm 2,8 \mathrm{MHz}$		25	30	-	dB
$\mathrm{f}_{\mathrm{N}} \pm 2,8 \mathrm{MHz} \quad \ldots \quad \mathrm{f}_{\mathrm{N}} \pm 3,3 \mathrm{MHz}$		30	35	-	dB
$\mathrm{f}_{\mathrm{N}} \pm 3,3 \mathrm{MHz} \quad \ldots \quad \mathrm{f}_{\mathrm{N}} \pm 20 \mathrm{MHz}$		$40^{1)}$	45	-	dB
$\mathrm{f}_{\mathrm{N}} \pm 20 \mathrm{MHz}$... $\mathrm{f}_{\mathrm{N}} \pm 28 \mathrm{MHz}$		45	50	-	dB
$\mathrm{f}_{\mathrm{N}} \pm 28 \mathrm{MHz}$... $\mathrm{f}_{\mathrm{N}} \pm 60 \mathrm{MHz}$		$55^{2)}$	60	-	dB
Adjacent channel selectivity $5,0 \mathrm{MHz}$ offset of carrier	ACS	45	49	-	dB
Input IP3		40	-	-	dBm
Temperature coefficient of frequency ${ }^{3)}$ Turnover temperature	$\begin{aligned} & T C_{\mathrm{f}} \\ & T_{0} \end{aligned}$	-	$\begin{gathered} -0,036 \\ 20 \end{gathered}$	-	$\begin{aligned} & \mathrm{ppm} / \mathrm{K}^{2} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

[^1]Data Sheet

Matching network to 200Ω

Transformers are only required for measurement in a 50Ω environment

$$
L_{s 4}=150 \mathrm{nH}
$$

$$
\mathrm{L}_{\mathrm{p} 1}=560 \mathrm{nH} \text { (for trimming) }
$$

```
\(L_{s 1}=100 \mathrm{nH}\)
\(L_{s 1}=100 \mathrm{nH}\)
\(\mathrm{L}_{\mathrm{p} 3}=150 \mathrm{nH}\)
\(\mathrm{L}_{\mathrm{p} 3}=150 \mathrm{nH}\)
\(\mathrm{L}_{\mathrm{p} 2}=100 \mathrm{nH}\)
\(\mathrm{L}_{\mathrm{p} 2}=100 \mathrm{nH}\)

Element values depend upon board layout.

Data Sheet

\section*{Transfer function}


Transfer function (pass band)


6 Sep 23, 2005

\section*{Published by EPCOS AG}

\section*{Surface Acoustic Wave Components Division, SAW COM}

\section*{P.O. Box 8017 09, 81617 Munich, GERMANY}
© EPCOS AG 2005. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.
This brochure replaces the previous edition.
For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.
Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.```


[^0]:    1) Except for two narrow-band responses between 219 and 222 MHz which may reach 2 dB above
    2) Except for two narrow-band responses between 236 and 240 MHz which may reach 2 dB above
    3) Temperature dependance of $f_{\mathrm{c}}: \quad f_{\mathrm{c}}\left(T_{\mathrm{A}}\right)=f_{\mathrm{c}}\left(T_{0}\right)\left(1+T C_{\mathrm{f}}\left(T_{\mathrm{A}}-T_{0}\right)^{2}\right)$
[^1]:    1) Except for two narrow-band responses between 219 and 222 MHz which may reach 2 dB above
    2) Except for two narrow-band responses between 236 and 240 MHz which may reach 2 dB above
    3) Temperature dependance of $f_{\mathrm{c}}: \quad f_{\mathrm{c}}\left(T_{\mathrm{A}}\right)=f_{\mathrm{c}}\left(T_{0}\right)\left(1+T C_{\mathrm{f}}\left(T_{\mathrm{A}}-T_{0}\right)^{2}\right)$
