Features - Integrated PLL Loop Filter - ESD Protection (4 kV HBM/200V MM; Except Pin 2: 4 kV HBM/100V MM) also at ANT1/ANT2 - High Output Power (8.0 dBm) with Low Supply Current (9.0 mA) - Modulation Scheme ASK/FSK - FSK Modulation is Achieved by Connecting an Additional Capacitor Between the XTAL Load Capacitor and the Open Drain Output of the Modulating Microcontroller - Easy to Design-in Due to Excellent Isolation of the PLL from the PA and Power Supply - Single Li-cell for Power Supply - Supply Voltage 2.0V to 4.0V in the Temperature Range of -40°C to +85°C - Package TSSOP8L - Single-ended Antenna Output with High Efficient Power Amplifier - CLK Output for Clocking the Microcontroller - One-chip Solution with Minimum External Circuitry # **Applications** - Industrial/Aftermarket Remote Keyless Entry Systems - . Alarm, Telemetering, and Energy Metering Systems - Remote Control Systems for Consumer and Industrial Markets - Access Control Systems - Home Automation - Home Entertainment - Toys # 1. Description The ATA8401 is a PLL transmitter IC, which has been developed for the demands of RF low-cost transmission systems for industrial applications at data rates up to 50 kBaud ASK and 32 kBaud FSK modulation scheme. The transmitting frequency range is 310 MHz to 350 MHz. It can be used in both FSK and ASK systems. Figure 1-1. System Block Diagram # UHF ASK/FSK Industrial Transmitter **ATA8401** # 2. Pin Configuration Figure 2-1. Pinning TSSOP8L Table 2-1.Pin Description | Pin | Symbol | Function | Configuration | |-----|--------------|--|-------------------------------------| | 1 | CLK | Clock output signal for microcontroller
The clock output frequency is set by the
crystal to f _{XTAL} /4 | 100Ω CLK
100Ω | | 2 | PA_ENABLE | Switches on power amplifier used for ASK modulation | PA_ENABLE 50 k Ω UREF = 1.1V | | 3 | ANT2
ANT1 | Emitter of antenna output stage Open collector antenna output | ANT1
O
ANT2 | Table 2-1. Pin Description (Continued) | Pin | Symbol | Function | Configuration | |-----|--------|------------------------|---| | 5 | XTAL | Connection for crystal | VS VS VS 1.5 kΩ 1.2 kΩ 182 μA | | 6 | VS | Supply voltage | See ESD protection circuitry (see Figure 4-5 on page 9) | | 7 | GND | Ground | See ESD protection circuitry (see Figure 4-5 on page 9) | | 8 | ENABLE | Enable input | ENABLE 200 kΩ | Figure 2-2. Block Diagram # 3. General Description This fully integrated PLL transmitter allows particularly simple, low-cost RF miniature transmitters to be assembled. The VCO is locked to 32 f_{XTAL} , and therefore a 9.8438 MHz crystal is needed for a 315 MHz transmitter. All other PLL and VCO peripheral elements are integrated. The XTO is a series resonance oscillator so that only one capacitor together with a crystal connected in series to GND are needed as external elements. The crystal oscillator together with the PLL typically needs < 3 ms until the PLL is locked and the CLK output is stable. There is a wait time of ≥ 3 ms until the CLK is used for the microcontroller and the PA is switched on. The power amplifier is an open-collector output delivering a current pulse, which is nearly independent from the load impedance. The delivered output power is therefore controllable via the connected load impedance. This output configuration enables a simple matching to any kind of antenna or to 50 Ω A high power efficiency of $\eta = P_{out}/(I_{S,PA} \ V_S)$ of 40% for the power amplifier results when an optimized load impedance of $Z_{Load} = (255 + j192) \ \Omega$ is used at 3V supply voltage. # 4. Functional Description If ENABLE = L and the PA_ENABLE = L, the circuit is in standby mode, consuming only a very small amount of current, so that a lithium cell used as power supply can work for several years. With ENABLE = H the XTO, PLL, and the CLK driver are switched on. If PA_ENABLE remains L, only the PLL and the XTO are running, and the CLK signal is delivered to the microcontroller. The VCO locks to 32 times the XTO frequency. With ENABLE = H and PA_ENABLE = H the PLL, XTO, CLK driver, and the power amplifier are on. The power amplifier can be switched on and off with PA_ENABLE. This is used to perform the ASK modulation. ### 4.1 ASK Transmission The ATA8401 is activated by ENABLE = H. PA_ENABLE must remain L for typically ≥ 3 ms, then the CLK signal can be taken to clock the microcontroller and the output power can be modulated by means of the PA_ENABLE pin. After transmission, PA_ENABLE is switched to L and the microcontroller switches back to internal clocking. The ATA8401 is switched back to standby mode with ENABLE = L. ### 4.2 FSK Transmission The ATA8401 is activated by ENABLE = H. PA_ENABLE must remain L for typically ≥ 3 ms, then the CLK signal can be taken to clock the microcontroller, and the power amplifier is switched on with PA_ENABLE = H. The chip is then ready for FSK modulation. The microcontroller starts to switch on and off the capacitor between the XTAL load capacitor and GND with an open-drain output port, thus changing the reference frequency of the PLL. If the switch is closed, the output frequency is lower than if the switch is open. After transmission, PA_ENABLE is switched to L, and the microcontroller switches back to internal clocking. The ATA8401 is switched back to standby mode with ENABLE = L. The accuracy of the frequency deviation with XTAL pulling method is about ±25% when the following tolerances are considered. Figure 4-1. Tolerances of Frequency Modulation Using C_4 = 8.2 pF ±5%, C_5 = 10 pF ±5%, a switch port with C_{Switch} = 3 pF ±10%, stray capacitances on each side of the crystal of C_{Stray1} = C_{Stray2} = 1 pF ±10%, a parallel capacitance of the crystal of C_0 = 3.2 pF ±10%, and a crystal with C_M = 13 fF ±10%, typically results in an FSK deviation of ±21.5 kHz with worst case tolerances of ±16.25 kHz to ±28.01 kHz. # 4.3 CLK Output An output CLK signal is provided for a connected microcontroller. The delivered signal is CMOS compatible if the load capacitance is lower than 10 pF. ### 4.3.1 Clock Pulse Take-over The clock of the crystal oscillator can be used for clocking the microcontroller. A special feature of Atmel[®]'s ATARx9x is that it starts with an integrated RC-oscillator to switch on the ATA8401 with ENABLE = H, and after 1 ms assumes the clock signal of the transmission IC, so that the message can be sent with crystal accuracy. ### 4.3.2 Output Matching and Power Setting The output power is set by the load impedance of the antenna. The maximum output power is achieved with a load impedance of $Z_{Load,opt}$ = (255 + j192) Ω There must be a low resistive path to V_S to deliver the DC current. The delivered current pulse of the power amplifier is 9 mA. The maximum output power is delivered to a resistive load of 400Ω if the 1.0 pF output capacitance of the power amplifier is compensated by the load impedance. An optimum load impedance of: Z_{Load} = 400 Ω II j/(2 × π 1.0 pF) = (255 + j192) Ω thus results for the maximum output power of 8 dBm. The load impedance is defined as the impedance seen from the ATA8401's ANT1, ANT2 into the matching network. Do not confuse this large signal load impedance with a small signal input impedance delivered as input characteristic of RF amplifiers and measured from the application into the IC instead of from the IC into the application for a power amplifier. Less output power is achieved by lowering the real parallel part of 400Ω where the parallel imaginary part should be kept constant. Output power measurement can be done with the circuit shown in Figure 4-2. Note that the component values must be changed to compensate for the individual board parasitics until the ATA8401 has the right load impedance $Z_{Load,opt} = (255 + j192)\Omega$. Also the damping of the cable used to measure the output power must be calibrated out. **Figure 4-2.** Output Power Measurement at f = 315 MHz Note: For 345 MHz C₂ has to be changed to 2.7 pF # 4.4 Application Circuit A value of C_3 = 68 nF/X7R is recommended for the supply-voltage blocking capacitor C_3 (see Figure 4-3 on page 7 and Figure 4-4 on page 8). C_1 and C_2 are used to match the loop antenna to the power amplifier where C_1 typically is 22 pF/NP0 and C_2 is 10.8 pF/NP0 (18 pF + 27 pF in series). For C_2 , two capacitors in series should be used to achieve a better tolerance value and to have the possibility of realizing the $Z_{Load.oot}$ using standard valued capacitors. C_1 , together with the pins of ATA8401 and the PCB board wires, forms a series resonance loop that suppresses the 1st harmonic. Therefore, the position of C_1 on the PCB is important. Normally the best suppression is achieved when C_1 is placed as close as possible to the pins ANT1 and ANT2. The loop antenna should not exceed a width of 1.5 mm, otherwise the Q-factor of the loop antenna is too high. L_1 ([50 nH to 100 nH) can be printed on PCB. C_4 should be selected so that the XTO runs on the load resonance frequency of the crystal. Normally, a 15 pF load-capacitance crystal results in a value of 12 pF. Figure 4-3. ASK Application Circuit Figure 4-4. FSK Application Circuit Figure 4-5. **ESD Protection Circuit** #### **Absolute Maximum Ratings** 5. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. | Parameters | Symbol | Minimum | Maximum | Unit | |----------------------|---------------------------|-------------|---------------------|------| | Supply voltage | V _S | | 5 | V | | Power dissipation | P _{tot} | | 100 | mW | | Junction temperature | T _j | | 150 | °C | | Storage temperature | T _{stg} | – 55 | +85 | °C | | Ambient temperature | T_{amb} | – 55 | +85 | °C | | Input voltage | V _{maxPA_ENABLE} | -0.3 | $(V_S + 0.3)^{(1)}$ | V | 1. If $V_S + 0.3$ is higher than 3.7V, the maximum voltage will be reduced to 3.7V. Note: ### **Thermal Resistance** | Parameters | Symbol | Value | Unit | | |------------------|------------|-------|------|--| | Junction ambient | R_{thJA} | 170 | K/W | | # **Electrical Characteristics** V_S = 2.0V to 4.0V, T_{amb} = 25°C unless otherwise specified. Typical values are given at V_S = 3.0V and T_{amb} = 25°C. All parameters are referred to GND (pin 7). | Parameters | Test Conditions | Symbol | Min. | Тур. | Max. | Unit | |----------------|--|-------------------------|------|------|------|----------| | Supply current | Power down,
V _{ENABLE} < 0.25 V, -40°C to 85°C
V _{PA-ENABLE} < 0.25 V, 25°C
(100% correlation tested) | I _{S_Off} | | < 10 | 350 | nA
nA | | Supply current | Power up, PA off, $V_S = 3 \text{ V}$, $V_{ENABLE} > 1.7 \text{ V}$, $V_{PA-ENABLE} < 0.25 \text{ V}$ | I _S | | 3.7 | 4.8 | mA | | Supply current | Power up, $V_S = 3.0 \text{ V}$, $V_{ENABLE} > 1.7 \text{ V}$, $V_{PA-ENABLE} > 1.7 \text{ V}$ | I _{S_Transmit} | | 9 | 11.6 | mA | 1. If V_S is higher than 3.6V, the maximum voltage will be reduced to 3.6V. Note: # 7. Electrical Characteristics (Continued) V_S = 2.0V to 4.0V, T_{amb} = 25°C unless otherwise specified. Typical values are given at V_S = 3.0V and T_{amb} = 25°C. All parameters are referred to GND (pin 7). | Parameters | Test Conditions | Symbol | Min. | Тур. | Max. | Unit | |--|---|---|------------------|---------------------|--|------------------| | Output power | V _S = 3.0V, T _{amb} = 25°C,
f = 315 MHz, Z _{Load} = (255 + j192)W | P _{Ref} | 6.0 | 8.0 | 10.5 | dBm | | Output power variation for the full temperature range | $T_{amb} = 25^{\circ}C,$ $V_{S} = 3.0V$ $V_{S} = 2.0V$ | $\Delta P_{Ref} \ \Delta P_{Ref}$ | | | -1.5
-4.0 | dB
dB | | Output power variation for the full temperature range | $T_{amb} = 25^{\circ}C,$ $V_{S} = 3.0V$ $V_{S} = 2.0V,$ $P_{Out} = P_{Ref} + \Delta P_{Ref}$ | $\Delta P_{Ref} \ \Delta P_{Ref}$ | | | -2.0
-4.5 | dB
dB | | Achievable output-power range | Selectable by load impedance | P_{Out_typ} | 0 | | 8.0 | dBm | | Spurious emission | $f_{CLK} = f_0/128$
Load capacitance at pin CLK = 10 pF
$f_0 \pm 1 \times f_{CLK}$
$f_0 \pm 4 \times f_{CLK}$
Other spurious are lower | | | –55
–52 | | dBc
dBc | | Oscillator frequency XTO
(= phase comparator frequency) | $\begin{split} &f_{XTO} = f_0/32 \\ &f_{XTAL} = \text{resonant frequency of the XTAL,} \\ &C_M \leq 10 \text{ fF, load capacitance selected} \\ &\text{accordingly} \\ &T_{amb} = 25^{\circ}\text{C} \end{split}$ | f _{XTO} | | f _{XTAL} | | ppm | | PLL loop bandwidth | | | | 250 | | kHz | | Phase noise of phase comparator | Referred to $f_{PC} = f_{XTO}$,
25 kHz distance to carrier | | | -116 | -110 | dBc/Hz | | In-loop phase noise PLL | 25 kHz distance to carrier | | | -86 | -80 | dBc/Hz | | Phase noise VCO | At 1 MHz
At 36 MHz | | | -94
-125 | -90
-121 | dBc/Hz
dBc/Hz | | Frequency range of VCO | | f _{VCO} | 310 | | 350 | MHz | | Clock output frequency (CMOS microcontroller compatible) | | | | f ₀ /128 | | MHz | | Voltage swing at pin CLK | C _{Load} ≤10 pF | V _{0h}
V _{0l} | $V_S \times 0.8$ | | $V_S \times 0.2$ | V
V | | Series resonance R of the crystal | | Rs | | | 110 | Ω | | Capacitive load at pin XT0 | | | | | 7 | pF | | FSK modulation frequency rate | Duty cycle of the modulation signal = 50% | | 0 | | 32 | kHz | | ASK modulation frequency rate | Duty cycle of the modulation signal = 50% | | 0 | | 50 | kHz | | ENABLE input | Low level input voltage
High level input voltage
Input current high | V _{II}
V _{Ih}
I _{In} | 1.7 | | 0.25
20 | V
V
µA | | PA_ENABLE input | Low level input voltage BLE input High level input voltage Input current high | | 1.7 | | 0.25
V _S ⁽¹⁾
5 | V
V
µA | 1. If V_S is higher than 3.6V, the maximum voltage will be reduced to 3.6V. Note: # 8. Ordering Information | Extended Type Number | r Package MOQ | | Remarks | | | |----------------------|---------------|----------|---------------------------|--|--| | ATA8401-6AQY | TSSOP8L | 5000 pcs | Taped and reeled, Pb-free | | | # 9. Package Information Package: TSSOP 8L Dimensions in mm Drawing-No.: 6.543-5083.01-4 Issue: 2; 15.03.04 ### **Atmel Corporation** 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 ## **Regional Headquarters** ### Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 #### Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 #### Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 ## **Atmel Operations** ### Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 ### Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ### ASIC/ASSP/Smart Cards Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 #### RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 ### **Biometrics** Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-47-50 Fax: (33) 4-76-58-47-60 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.