

# APT11026JFLL

### **1100V 33A 0.260**Ω

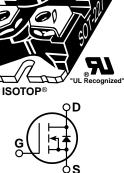
## POWER MOS 7™

FREDFET

Power MOS 7<sup>TM</sup> is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7<sup>TM</sup> by significantly lowering R<sub>DS(ON)</sub> and Q<sub>g</sub>. Power MOS 7<sup>TM</sup> combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

- Lower Input Capacitance
- Lower Miller Capacitance
- Lower Gate Charge, Qg
- Increased Power Dissipation
- Easier To Drive
- Popular SOT-227 Package
- FAST RECOVERY BODY DIODE

#### MAXIMUM RATINGS


| All Ratings: T | <sub>C</sub> = 25°C unless | otherwise s | specified. |
|----------------|----------------------------|-------------|------------|
|----------------|----------------------------|-------------|------------|

| Symbol                           | Parameter                                                              | APT11026JFLL | UNIT    |
|----------------------------------|------------------------------------------------------------------------|--------------|---------|
| V <sub>DSS</sub>                 | Drain-Source Voltage                                                   | 1100         | Volts   |
| I <sub>D</sub>                   | Continuous Drain Current @ T <sub>C</sub> = 25°C                       | 33           | A       |
| I <sub>DM</sub>                  | Pulsed Drain Current <sup>①</sup>                                      | 134          | - Amps  |
| V <sub>GS</sub>                  | Gate-Source Voltage Continuous                                         | ±30          | Valta   |
| V <sub>GSM</sub>                 | Gate-Source Voltage Transient                                          | ±40          | - Volts |
| P <sub>D</sub>                   | Total Power Dissipation @ T <sub>C</sub> = 25°C                        | 694          | Watts   |
| ' D                              | Linear Derating Factor                                                 | 5.56         | W/°C    |
| T <sub>J</sub> ,T <sub>STG</sub> | Operating and Storage Junction Temperature Range                       | -55 to 150   |         |
| ΤL                               | Lead Temperature: 0.063" from Case for 10 Sec.                         | 300          | 7 ~     |
| I <sub>AR</sub>                  | Avalanche Current $^{\textcircled{1}}$ (Repetitive and Non-Repetitive) | 33           | Amps    |
| E <sub>AR</sub>                  | Repetitive Avalanche Energy ①                                          | 50           |         |
| E <sub>AS</sub>                  | Single Pulse Avalanche Energy ④                                        | 3600         | mJ      |

#### STATIC ELECTRICAL CHARACTERISTICS

| Symbol              | Characteristic / Test Conditions                                                                    | MIN  | TYP | MAX   | UNIT  |
|---------------------|-----------------------------------------------------------------------------------------------------|------|-----|-------|-------|
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage ( $V_{GS} = 0V, I_{D} = 250\mu A$ )                                  | 1100 |     |       | Volts |
| I <sub>D(on)</sub>  | On State Drain Current <sup>(2)</sup> $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$    | 33   |     |       | Amps  |
| R <sub>DS(on)</sub> | Drain-Source On-State Resistance <sup>(2)</sup> $(V_{GS} = 10V, 0.5 I_{D[Cont.]})$                  |      |     | 0.260 | Ohms  |
|                     | Zero Gate Voltage Drain Current ( $V_{DS} = V_{DSS}$ , $V_{GS} = 0V$ )                              |      |     | 250   | μA    |
| DSS                 | Zero Gate Voltage Drain Current ( $V_{DS} = 0.8 V_{DSS}$ , $V_{GS} = 0V$ , $T_{C} = 125^{\circ}C$ ) |      |     | 1000  | μΛ    |
| I <sub>GSS</sub>    | Gate-Source Leakage Current ( $V_{GS} = \pm 30V$ , $V_{DS} = 0V$ )                                  |      |     | ±100  | nA    |
| V <sub>GS(th)</sub> | Gate Threshold Voltage ( $V_{DS} = V_{GS}$ , $I_{D} = 5mA$ )                                        | 3    |     | 5     | Volts |

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.



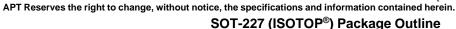
#### DYNAMIC CHARACTERISTICS

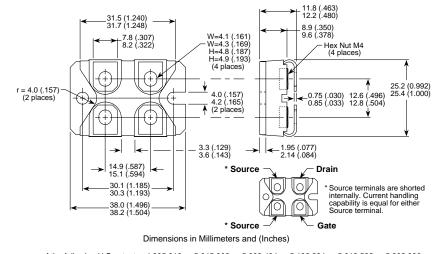
| Symbol               | Characteristic                 | Test Conditions                                | MIN | TYP   | MAX | UNIT |
|----------------------|--------------------------------|------------------------------------------------|-----|-------|-----|------|
| C <sub>iss</sub>     | Input Capacitance              | $V_{GS} = 0V$                                  |     | 10640 |     |      |
| C <sub>oss</sub>     | Output Capacitance             | V <sub>DS</sub> = 25V                          |     | 1605  |     | pF   |
| C <sub>rss</sub>     | Reverse Transfer Capacitance   | f = 1 MHz                                      |     | 302   |     |      |
| Qg                   | Total Gate Charge <sup>③</sup> | V <sub>GS</sub> = 10V                          |     | 389   |     |      |
| Q <sub>gs</sub>      | Gate-Source Charge             | $V_{DD} = 0.5 V_{DSS}$                         |     | 53    |     | nC   |
| Q <sub>gd</sub>      | Gate-Drain ("Miller") Charge   | I <sub>D</sub> = I <sub>D</sub> [Cont.] @ 25°C |     | 246   |     |      |
| t <sub>d</sub> (on)  | Turn-on Delay Time             | V <sub>GS</sub> = 15V                          |     | 21    |     |      |
| t r                  | Rise Time                      | $V_{DD} = 0.5 V_{DSS}$                         |     | 13    |     | ns   |
| t <sub>d</sub> (off) | Turn-off Delay Time            | I <sub>D</sub> = I <sub>D</sub> [Cont.] @ 25°C |     | 63    |     | 115  |
| t <sub>f</sub>       | Fall Time                      | $R_{G} = 0.6\Omega$                            |     | 20    |     |      |

#### SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

| Symbol            | Characteristic / Test Conditions                                                                         |                        | MIN | TYP | MAX | UNIT  |
|-------------------|----------------------------------------------------------------------------------------------------------|------------------------|-----|-----|-----|-------|
| ۱ <sub>s</sub>    | Continuous Source Current (Body Diode)                                                                   |                        |     |     | 33  | 0     |
| I <sub>SM</sub>   | Pulsed Source Current <sup>①</sup> (Body Diode)                                                          |                        |     |     | 134 | Amps  |
| V <sub>SD</sub>   | Diode Forward Voltage $\textcircled{O}$ (V <sub>GS</sub> = 0V, I <sub>S</sub> = -I <sub>D</sub> [Cont.]) |                        |     |     | 1.3 | Volts |
| dv/ <sub>dt</sub> | Peak Diode Recovery <sup>dv/</sup> dt <sup>⑤</sup>                                                       |                        |     |     | 18  | V/ns  |
|                   | Reverse Recovery Time                                                                                    | T <sub>j</sub> = 25°C  |     |     | 310 |       |
| t <sub>rr</sub>   | (I <sub>S</sub> = -I <sub>D</sub> [Cont.], <sup>di</sup> / <sub>dt</sub> = 100A/µs)                      | T <sub>j</sub> = 125°C |     |     | 625 | ns    |
| 0                 | Reverse Recovery Charge                                                                                  | T <sub>j</sub> = 25°C  |     | 2.0 |     |       |
| Q <sub>rr</sub>   | (I <sub>S</sub> = -I <sub>D</sub> [Cont.], di/ <sub>dt</sub> = 100A/µs)                                  | T <sub>j</sub> = 125°C |     | 6.0 |     | μC    |
| I <sub>RRM</sub>  | Peak Recovery Current                                                                                    | T <sub>j</sub> = 25°C  |     | 15  |     |       |
|                   | (I <sub>S</sub> = -I <sub>D</sub> [Cont.], <sup>di</sup> / <sub>dt</sub> = 100A/µs)                      | T <sub>j</sub> = 125°C |     | 26  |     | Amps  |

#### THERMAL CHARACTERISTICS


| Symbol                | Characteristic      | MIN | TYP | MAX  | UNIT |
|-----------------------|---------------------|-----|-----|------|------|
| $R_{	extsf{	heta}JC}$ | Junction to Case    |     |     | 0.18 |      |
| $R_{	extsf{	heta}JA}$ | Junction to Ambient |     |     | 40   | °C/W |


1 Repetitive Rating: Pulse width limited by maximum junction temperature.

2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%

③ See MIL-STD-750 Method 3471

device itself.  $I_{S} \leq -I_{D[Cont.]} \quad di/_{dt} \leq 700 \text{A/}\mu \text{s} \quad V_{R} \leq V_{DSS} \quad T_{J} \leq 150^{\circ}\text{C}$ 



