## 74LVC2G66

## Bilateral switch

Rev. 01 - 29 June 2004
Product data sheet

## 1. General description

The 74LVC2G66 is a high-performance, low-power, low-voltage, Si-gate CMOS device.
The 74LVC2G66 provides two analog switches. Each switch has a input and output (pins $Y$ and $Z$ ) and an active HIGH enable input (pin E). When pin E is LOW, the analog switch is turned off.

## 2. Features

- Wide supply voltage range from 1.65 V to 5.5 V

■ Very low ON-resistance:

- $7.5 \Omega$ (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- $6.5 \Omega$ (typical) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- $6 \Omega$ (typical) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
- High noise immunity
- Complies with JEDEC standard:
- JESD8-7 ( 1.65 V to 1.95 V )
- JESD8-5 (2.3 V to 2.7 V )
- JESD8-B/JESD36 (2.7 V to 3.6 V ).
- ESD protection:
- HBM EIA/JESD22-A114-B exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V.
- CMOS low-power consumption
- Latch-up performance meets requirements of JESD78 Class I
- Direct interface with TTL levels
- Enable inputs accept voltages up to 5 V
- SOT505-2 and SOT765-1 package
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.


## 3. Quick reference data

Table 1: Quick reference data
$G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f} \leq 2.5 \mathrm{~ns}$.

| Symbol | Parameter | Conditions | Min Typ | Max Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| t $\mathrm{PZH}, \mathrm{t}$ PZL | turn-on time nE to $\mathrm{V}_{\mathrm{OS}}$ | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$ |  |  |  |
|  | $\mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | 2.4 | - | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ | - | 1.8 | - | ns |

Table 1: Quick reference data ...continued $G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f} \leq 2.5 \mathrm{~ns}$.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {PHZ }}$, tPLZ | turn-off time nE to $\mathrm{V}_{\text {OS }}$ | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | 3.0 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$ | - | 2.2 | - | ns |
| $\mathrm{C}_{1}$ | enable input capacitance |  | - | 2.0 | - | pF |
| $\mathrm{C}_{\text {S }}$ | switch capacitance | OFF-state | - | 5 | - | pF |
|  |  | ON-state | - | 9.5 | - | pF |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$ |  | 11.0 |  | pF |

[1] $\mathrm{C}_{\mathrm{PD}}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF;
$\mathrm{C}_{\mathrm{S}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ total load switching outputs.
[2] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$.

## 4. Ordering information

Table 2: Ordering information

| Type number | Package |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Temperature range | Name | Description | Version |
| $74 \mathrm{LVC2G66DP}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TSSOP8 | plastic thin shrink small outline package; 8 leads; <br> body width 3 mm ; lead length 0.5 mm | SOT505-2 |
| $74 \mathrm{LVC2G66DC}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | VSSOP8 | plastic very thin shrink small outline package; <br> 8 leads; body width 2.3 mm | SOT765-1 |

## 5. Marking

Table 3: Marking

| Type number | Marking code |
| :--- | :--- |
| 74LVC2G66DP | V66 |
| 74LVC2G66DC | V66 |

## 6. Functional diagram



Fig 1. Logic symbol.


Fig 2. IEC logic symbol.


Fig 3. Logic diagram (one switch).

## 7. Pinning information

### 7.1 Pinning



Fig 4. Pin configuration.

### 7.2 Pin description

Table 4: Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| 1 Y | 1 | independent input or output |
| $1 Z$ | 2 | independent input or output |
| $2 E$ | 3 | enable input (active HIGH) |
| GND | 4 | ground (0 V) |
| $2 Y$ | 5 | independent input or output |

Table 4: Pin description ...continued

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| $2 Z$ | 6 | independent input or output |
| 1 E | 7 | enable input (active HIGH) |
| $\mathrm{V}_{\mathrm{CC}}$ | 8 | supply voltage |

8. Functional description

### 8.1 Function table

Table 5: Function table [1]

| Input E | Switch |
| :--- | :--- |
| L | OFF-state |
| H | ON-state |

[1] $\mathrm{H}=$ HIGH voltage level; $\mathrm{L}=\mathrm{LOW}$ voltage level.

## 9. Limiting values

Table 6: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{C C}$ | supply voltage |  | -0.5 | +6.5 | V |
| $V_{1}$ | input voltage |  | [1] -0.5 | +6.5 | V |
| $I_{\text {IK }}$ | input diode current | $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | - | -50 | mA |
| $\mathrm{I}_{\text {SK }}$ | switch diode current | $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{C C}+0.5 \mathrm{~V}$ | - | $\pm 50$ | mA |
| $\mathrm{V}_{S}$ | DC switch voltage range | enable and disable mode | -0.5 | $\mathrm{V}_{C C}+0.5$ | V |
| $I_{S}$ | switch source or sink current | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}>-0.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$ | - | $\pm 50$ | mA |
| $\mathrm{I}_{\text {cc }} \mathrm{I}_{\text {GND }}$ | $\mathrm{V}_{\text {CC }}$ or GND current |  | - | $\pm 100$ | mA |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{P}_{\text {tot }}$ | power dissipation | $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | - | 300 | mW |

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## 10. Recommended operating conditions

Table 7: Recommended operating conditions

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage | 1.65 | - | 5.5 | V |  |
| $\mathrm{~V}_{1}$ | input voltage | 0 | - | 5.5 | V |  |
| $\mathrm{~V}_{\mathrm{S}}$ | DC switch voltage range | enable and disable mode | $[1] \underline{[2]}$ | 0 | - | $\mathrm{V}_{\mathrm{CC}}$ |
|  |  | V |  |  |  |  |

Table 7: Recommended operating conditions ...continued

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}_{\text {amb }}$ | operating ambient <br> temperature |  | -40 | - | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | input rise and fall times | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 2.7 V | $\underline{[3]}$ | 0 | - | 20 |
|  |  | $\mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 5.5 V | $\underline{[3]}$ | 0 | - | 10 |

[1] To avoid drawing $\mathrm{V}_{\mathrm{CC}}$ current out of terminal nZ , when switch current flows in terminal nY , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal nZ , no $\mathrm{V}_{\mathrm{CC}}$ current will flow out of terminal nY . In this case there is no limit for the voltage drop across the switch.
[2] For overvoltage tolerant switch voltage capability, see the 74LVCV2G66.
[3] Applies to control signal levels.

## 11. Static characteristics

Table 8: Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C} \underline{[1]}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | $0.65 \times \mathrm{V}_{\text {CC }}$ | - | - | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | 1.7 | - | - | V |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | $0.7 \times \mathrm{V}_{\text {cc }}$ | - | - | V |
| VIL | LOW-level input voltage | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | - | - | $0.35 \times \mathrm{V}_{\text {cC }}$ | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V | - | - | 0.8 | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | - | - | $0.3 \times \mathrm{V}_{\text {CC }}$ | V |
| $I_{\text {LI }}$ | input leakage current on control pin | $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | $\pm 0.1$ | $\pm 5$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {S(OFF) }}$ | analog switch OFF-state current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mid \mathrm{V}_{\mathrm{Sl}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure } 5 \end{aligned}$ | - | $\pm 0.1$ | $\pm 5$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {S(ON) }}$ | analog switch ON-state current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{I} \mathrm{~V}_{\mathrm{SI}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \text { see Figure } 6 \end{aligned}$ | - | $\pm 0.1$ | $\pm 5$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | quiescent supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | 0.1 | 10 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\mathrm{CC}}$ | additional quiescent supply current per control pin | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | 5 | 500 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{1}$ | input capacitance |  | - | 2.0 | - | pF |
| Cs | switch capacitance | OFF-state | - | 5 | - | pF |
|  |  | ON-state | - | 9.5 | - | pF |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | $0.65 \times \mathrm{V}_{\mathrm{CC}}$ | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.7 | - | - | V |
|  |  | $\mathrm{V}_{\text {CC }}=2.7 \mathrm{~V}$ to 3.6 V | 2.0 | - | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | $0.7 \times \mathrm{V}_{\text {cc }}$ | - | - | V |

Table 8: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIL | LOW-level input voltage | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | - | - | $0.35 \times \mathrm{V}_{\text {cc }}$ | V |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 0.7 | V |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V | - | - | 0.8 | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | - | - | $0.3 \times \mathrm{V}_{\mathrm{CC}}$ | V |
| l LI | input leakage current on control pin | $\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | - | $\pm 100$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {S(OFF) }}$ | analog switch OFF-state current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{LL}} ;\left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure 5 } \end{aligned}$ | - | - | $\pm 200$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {S(ON })}$ | analog switch ON-state current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{SI}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; see Figure 6 } \end{aligned}$ | - | - | $\pm 200$ | $\mu \mathrm{A}$ |
| $I_{\text {cc }}$ | quiescent supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | - | 200 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\text {CC }}$ | additional quiescent supply current per control pin | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | - | 5000 | $\mu \mathrm{A}$ |

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$.
Fig 5. Test circuit for measuring switch OFF-state current.

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 6. Test circuit for measuring switch ON-state current.

Table 9: Resistance $\mathrm{R}_{\mathrm{ON}}$
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ); see test circuit Figure 7.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |
| $\mathrm{R}_{\mathrm{ON}(\text { peak })}$ | switch ON -state <br> resistance (peak) | $\mathrm{V}_{\mathrm{S}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ | $\underline{[1]}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 35 | 100 | $\Omega$ |  |
|  | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 14 | 30 | $\Omega$ |  |  |
|  | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | 11.5 | 25 | $\Omega$ |  |  |
|  | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 8.5 | 20 | $\Omega$ |  |  |
|  | $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | 6.5 | 15 | $\Omega$ |  |  |

Table 9: Resistance $\mathrm{R}_{\mathrm{ON}}$...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ); see test circuit Figure 7.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{\text {ON(rail) }}$ | switch ON-state resistance (rail) | $\mathrm{V}_{\mathrm{S}}=\mathrm{GND} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ | [1] |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 10 | 30 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 8.5 | 20 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | 7.5 | 18 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 6.5 | 15 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | 6 | 10 | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65$ to 1.95 V | - | 12 | 30 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 8.5 | 20 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | 7.5 | 18 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 6.5 | 15 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | 6 | 10 | $\Omega$ |
| $\mathrm{R}_{\text {ON(flat) }}$ | switch ON-state resistance (flatness) | $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} ; \\ & \text { see Figure } 9 \text { to Figure } 13 \end{aligned}$ | [2] |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 100 | - | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 17 | - | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | 10 | - | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 5 | - | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | 3 | - | $\Omega$ |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{R}_{\text {ON( } \text { (eak) }}$ | switch ON-state resistance (peak) | $\mathrm{V}_{\mathrm{S}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | - | 150 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 45 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | - | 38 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | - | 30 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | - | 23 | $\Omega$ |
| $\mathrm{R}_{\mathrm{ON}(\text { rail })}$ | switch ON-state resistance (rail) | $\mathrm{V}_{\mathrm{S}}=\mathrm{GND} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | - | 45 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 30 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | - | 27 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | - | 23 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | - | 15 | $\Omega$ |
|  |  | $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | - | 45 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 30 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | - | - | 27 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | - | 23 | $\Omega$ |
|  |  | $\mathrm{I}_{\mathrm{S}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | - | 15 | $\Omega$ |

[1] These typical values are measured at $T_{a m b}=25^{\circ} \mathrm{C}$ and nominal $\mathrm{V}_{\mathrm{CC}}$.
[2] These typical values are measured at $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and nominal $\mathrm{V}_{\mathrm{CC}}$.

$V_{I}=G N D$ to $V_{C C}$.

Fig 7. Test circuit for measuring switch ON-resistance.

Fig 9. Switch ON-resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$.


(1) $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$.
(2) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$.
(4) $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
(5) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig 8. Typical switch ON-resistance as a function of input voltage; $\mathrm{V}_{\mathrm{S}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{Cc}}$.

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 10. Switch ON-resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 11. Switch ON-resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$.

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 12. Switch ON-resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 13. Switch ON-resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

## 12. Dynamic characteristics

Table 10: Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); test circuit Figure 16.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} \underline{[1]}$ |  |  |  |  |  |  |
| $t_{\text {PHL }}, t_{\text {PLH }}$ | propagation delay $n Y$ to $n Z$ or $n Z$ to $n Y$ | see Figure 14 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | 0.8 | 2 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | 0.4 | 1.2 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | - | 0.4 | 1 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | 0.3 | 0.8 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | 0.2 | 0.6 | ns |
| $\mathrm{t}_{\text {PZH, }}, \mathrm{t}_{\text {PZL }}$ | turn-on time nE to $\mathrm{V}_{\text {OS }}$ | see Figure 15 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.0 | 4.6 | 10 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | 2.7 | 5.6 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 1.0 | 2.7 | 5.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.0 | 2.4 | 4.4 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | 1.0 | 1.8 | 3.9 | ns |
| $\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$ | turn-off time nE to $\mathrm{V}_{\text {OS }}$ | see Figure 15 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.0 | 3.8 | 9.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | 2.1 | 5.5 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 1.0 | 3.5 | 6.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.0 | 3.0 | 6.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to V 5.5 V | [2] [3]  <br>   |  |  |  |
| CPD | power dissipation capacitance | $\mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ | - | 9.0 | - | pF |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ | - | 11.0 | - | pF |
|  |  | $\mathrm{V}_{C C}=5.0 \mathrm{~V}$ | - | 15.7 | - | pF |
| $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | propagation delay nY to nZ or $n Z$ to $n Y$ | see Figure 14 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | - | - | 3.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | - | - | 2.0 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | - | - | 1.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | - | - | 1.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | - | 1.0 | ns |
| $\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$ turn-on time nE to $\mathrm{V}_{\text {OS }}$ |  | see Figure 15 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V | 1.0 | - | 13.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | - | 7.5 | ns |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V}$ | 1.0 | - | 6.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.0 | - | 6.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 1.0 | - | 5.0 | ns |

Table 10: Dynamic characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ); test circuit Figure 16.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{\text {PHz }}$ tpLZ | turn-off time nE to $\mathrm{V}_{\mathrm{OS}}$ | see Figure 15 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V | 1.0 | - | 11.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V | 1.0 | - | 7.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ | 1.0 | - | 8.5 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V | 1.0 | - | 8.0 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 1.0 | - | 6.5 | ns |

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal $\mathrm{V}_{\mathrm{CC}}$.
[2] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ total load switching outputs;
$\mathrm{C}_{\mathrm{S}}=$ switch capacitance.
[3] The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{Cc}}$.

## 13. Waveforms



Measurement points are given in Table 11.
Logic levels: $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage drop that occur with the output load.
 times.

Table 11: Measurement points

| Supply voltage | Input | Output |
| :--- | :--- | :--- |
| $\mathbf{V}_{\mathbf{C C}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{M}}$ |
| 1.65 V to 1.95 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ |
| 2.3 V to 2.7 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ |
| 2.7 V | 1.5 V | 1.5 V |
| 3.0 V to 3.6 V | 1.5 V | 1.5 V |
| 4.5 V to 5.5 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ |



Table 12: Measurement points

| Supply voltage | Input | Output |  |  |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{V}_{\mathbf{C C}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{X}}$ | $\mathbf{V}_{\mathbf{Y}}$ |
| 1.65 V to 1.95 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{OL}}+0.1 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{OH}}-0.1 \times \mathrm{V}_{\mathrm{CC}}$ |
| 2.3 V to 2.7 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{OL}}+0.1 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{OH}}-0.1 \times \mathrm{V}_{\mathrm{CC}}$ |
| 2.7 V | 1.5 V | 1.5 V | $\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ |
| 3.0 V to 3.6 V | 1.5 V | 1.5 V | $\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ |
| 4.5 V to 5.5 V | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ | $\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ |



Test data is given in Table 13.

## Definitions test circuit:

$R_{L}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to output impedance $Z_{o}$ of the pulse generator.
$\mathrm{V}_{\mathrm{EXT}}=$ Test voltage for switching times.
Fig 16. Load circuitry for switching times.

Table 13: Test data

| Supply voltage | Input |  | Load |  | $\mathrm{V}_{\text {EXT }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {cc }}$ | $V_{1}$ | $\mathbf{t r}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | $\mathrm{C}_{\mathrm{L}}$ | $\mathbf{R}_{\mathrm{L}}$ | $t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$ | $\mathbf{t}_{\text {PZH, }}, \mathrm{t}_{\text {PHZ }}$ | $\mathbf{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$ |
| 1.65 V to 1.95 V | $V_{C C}$ | $\leq 2.0 \mathrm{~ns}$ | 30 pF | $1 \mathrm{k} \Omega$ | open | GND | $2 \times V_{C C}$ |
| 2.3 V to 2.7 V | $\mathrm{V}_{\mathrm{CC}}$ | $\leq 2.0 \mathrm{~ns}$ | 30 pF | $500 \Omega$ | open | GND | $2 \times V_{C C}$ |
| 2.7 V | 2.7 V | $\leq 2.5 \mathrm{~ns}$ | 50 pF | $500 \Omega$ | open | GND | 6 V |
| 3.0 V to 3.6 V | 2.7 V | $\leq 2.5 \mathrm{~ns}$ | 50 pF | $500 \Omega$ | open | GND | 6 V |
| 4.5 V to 5.5 V | $\mathrm{V}_{\mathrm{CC}}$ | $\leq 2.5 \mathrm{~ns}$ | 50 pF | $500 \Omega$ | open | GND | $2 \times \mathrm{V}_{\text {CC }}$ |

## 14. Additional dynamic characteristics

Table 14: Additional dynamic characteristics
At recommended conditions; typical values measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{d}_{\text {sin }}$ | sine-wave distortion | $R_{L}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$; see Figure 17 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | 0.032 | - | \% |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | 0.008 | - | \% |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | 0.006 | - | \% |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 0.005 | - | \% |
|  |  | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ; \\ & \text { see Figure } 17 \end{aligned}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | 0.068 | - | \% |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ | - | 0.009 | - | \% |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | 0.008 | - | \% |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 0.006 | - | \% |
| $\mathrm{f}_{\mathrm{ON} \text {-state(res) }}$ | switch ON-state signal frequency response | $\mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see $\underline{\text { Figure } 18}$ | [1] |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | 135 | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | 145 | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | 150 | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 155 | - | MHz |
|  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 18 | [1] |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ | - | >500 | - | MHz |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ | - | >500 | - | MHz |
|  |  | $\mathrm{V}_{C C}=3 \mathrm{~V}$ | - | $>500$ | - | MHz |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | >500 | - | MHz |

Table 14: Additional dynamic characteristics ...continued
At recommended conditions; typical values measured at $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha_{\text {OFF(ft) }}$ | switch OFF-state signal feed-through attenuation | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 19 \end{aligned}$ | [2] |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | -46 | - | dB |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ | - | -46 | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | -46 | - | dB |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | -46 | - | dB |
|  |  | $R_{L}=50 \Omega ; C_{L}=5 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} \text {; see }$ Figure 19 | [2] |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | -37 | - | dB |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ | - | -37 | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | -37 | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | -37 | - | dB |
| $\mathrm{V}_{\mathrm{ct} \text { (cti-sw) }}$ | crosstalk between control input to signal output | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns} ; \text { see Figure } 20 \end{aligned}$ |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | - | - | mV |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ | - | 91 | - | mV |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | 119 | - | mV |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | 205 | - | mV |
| $\mathrm{V}_{\mathrm{ct}(\mathrm{sw}-\mathrm{sw})}$ | crosstalk between switches | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 21 \end{aligned}$ |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=1.65 \mathrm{~V}$ | - | - | - | dB |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ | - | -56 | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | -56 | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | -56 | - | dB |
|  |  | $\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \text { see }$ Figure 21 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | - | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ | - | -29 | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ | - | -28 | - | dB |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | -28 | - | dB |
| $\mathrm{f}_{\text {max }}$ | frequency response$(-3 \mathrm{~dB})$ | $\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{L}=10 \mathrm{pF}$; see Figure 18 | [1] |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ | - | 200 | - | MHz |
|  |  | $\mathrm{V}_{C C}=2.3 \mathrm{~V}$ | - | 350 | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$ | - | 410 | - | MHz |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | 440 | - | MHz |
| Q | charge injection | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \mathrm{R}_{\text {gen }}=0 \Omega ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \text { see Figure } 22 \end{aligned}$ | [3] |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$ | - | 0.003 | - | pC |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | 0.0035 | - | pC |

[1] Adjust $f_{i}$ voltage to obtain 0 dBm level at output. Increase $f_{i}$ frequency until dB meter reads -3 dB .
[2] Adjust $f_{i}$ voltage to obtain 0 dBm level at input.
[3] Guaranteed by design.


## Test conditions:

$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ : $\mathrm{V}_{\mathrm{i}}=1.4 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=2.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=4 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
Fig 17. Test circuit for measuring sine-wave distortion.


Fig 18. Test circuit for measuring the frequency response when switch is in ON-state.


Fig 19. Test circuit for measuring feed-through attenuation when switch is in OFF-state.


Fig 20. Test circuit for measuring crosstalk between control input and output.


001aaa547
$20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 2} / \mathrm{V}_{\mathrm{O} 1}\right)$ or $20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}\right)$.
Fig 21. Test circuit for measuring crosstalk between switches.


Fig 22. Test circuit for measuring injection charge.

## 15. Package outline

TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm ; lead length 0.5 mm SOT505-2


Fig 23. Package outline TSSOP8.


DIMENSIONS ( mm are the original dimensions)

| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $A_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(2)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $\mathrm{L}_{\mathrm{p}}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1 | $\begin{aligned} & \hline 0.15 \\ & 0.00 \end{aligned}$ | $\begin{aligned} & \hline 0.85 \\ & 0.60 \end{aligned}$ | 0.12 | $\begin{aligned} & \hline 0.27 \\ & 0.17 \end{aligned}$ | $\begin{aligned} & \hline 0.23 \\ & 0.08 \end{aligned}$ | $\begin{aligned} & 2.1 \\ & 1.9 \end{aligned}$ | $\begin{aligned} & \hline 2.4 \\ & 2.2 \end{aligned}$ | 0.5 | $\begin{aligned} & 3.2 \\ & 3.0 \end{aligned}$ | 0.4 | $\begin{aligned} & \hline 0.40 \\ & 0.15 \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 0.19 \end{aligned}$ | 0.2 | 0.13 | 0.1 | $\begin{aligned} & \hline 0.4 \\ & 0.1 \end{aligned}$ | $8^{\circ}$ 0 |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT765-1 |  | MO-187 |  | $\square$ ¢ | 02-06-07 |

Fig 24. Package outline VSSOP8.

## 16. Revision history

Table 15: Revision history

| Document ID | Release date | Data sheet status | Change notice | Order number | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 74LVC2G66_1 | 20040629 | Product data sheet | - | 939775013259 | - |

## 17. Data sheet status

| Level | Data sheet status $[1]$ | Product status $\underline{[2]}[3]$ | Definition <br> I |
| :--- | :--- | :--- | :--- |
| Objective data | Development | This data sheet contains data from the objective specification for product development. Philips <br> Semiconductors reserves the right to change the specification in any manner without notice. |  |
| II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published <br> at a later date. Philips Semiconductors reserves the right to change the specification without notice, in <br> order to improve the design and supply the best possible product. |
| III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the <br> right to make changes at any time in order to improve the design, manufacturing and supply. Relevant <br> changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

## 18. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## 19. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## 20. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

## 21. Contents

1 General description ..... 1
2 Features ..... 1
3 Quick reference data ..... 1
4 Ordering information ..... 2
5 Marking ..... 2
6 Functional diagram ..... 3
7 Pinning information ..... 3
7.1 Pinning ..... 3
7.2 Pin description ..... 3
8 Functional description ..... 4
8.1 Function table ..... 4
9 Limiting values ..... 4
10 Recommended operating conditions. ..... 4
11 Static characteristics ..... 5
12 Dynamic characteristics ..... 10
13 Waveforms ..... 11
14 Additional dynamic characteristics ..... 13
15 Package outline ..... 18
16 Revision history ..... 20
17 Data sheet status ..... 21
18 Definitions ..... 21
19 Disclaimers. ..... 21
20 Contact information ..... 21

