Obsolete Device Please use 24LC04B. # 24C04A ## 4K 5.0V I²CTM Serial EEPROM ## **FEATURES** - · Low power CMOS technology - Hardware write protect - Two wire serial interface bus, I²C[™] compatible - 5.0V only operation - Self-timed write cycle (including auto-erase) - Page-write buffer - 1 ms write cycle time for single byte - 1,000,000 Erase/Write cycles guaranteed - Data retention >200 years - 8-pin DIP/SOIC packages - Available for extended temperature ranges Commercial (C): 0°C to +70°C Industrial (I): -40°C to +85°C Automotive (E): -40°C to +125°C ## **DESCRIPTION** The Microchip Technology Inc. 24C04A is a 4K bit Electrically Erasable PROM. The device is organized as with a standard two wire serial interface. Advanced CMOS technology allows a significant reduction in power over NMOS serial devices. A special feature provides hardware write protection for the upper half of the block. The 24C04A has a page write capability of up to eight bytes, and up to four 24C04A devices may be connected to the same two wire bus. This device offers fast (1ms) byte write and extended (-40°C to 125°C) temperature operation. It is recommended that all other applications use Microchip's 24LC04B. ## PACKAGE TYPES ## **BLOCK DIAGRAM** I²C is a trademark of Philips Corporation. ## 1.0 ELECTRICAL CHARACTERISTICS ## 1.1 Maximum Ratings* | Vcc | 7.0V | |--|--------------------| | All inputs and outputs w.r.t. Vss | -0.6V to VCC +1.0V | | Storage temperature | 65°C to +150°C | | Ambient temp. with power applied | 65°C to +125°C | | Soldering temperature of leads (10 secon | ds)+300°C | | ESD protection on all pins | 4 kV | *Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 1-1: PIN FUNCTION TABLE | Name | Function | |--------|---| | A0 | No Function - Must be connected to VCC or Vss | | A1, A2 | Chip Address Inputs | | Vss | Ground | | SDA | Serial Address/Data I/O | | SCL | Serial Clock | | WP | Write Protect Input | | Vcc | +5V Power Supply | TABLE 1-2: DC CHARACTERISTICS | Vcc = +5V (±10%) | | Commercial (C): Tamb = 0°C to +70°C
Industrial (I): Tamb = -40°C to +85°C
Automotive (E): Tamb = -40°C to +125°C | | | | |--------------------------|-------------|--|-----------|-------|--| | Parameter | Symbol | Min. | Max. | Units | Conditions | | Vcc detector threshold | VTH | 2.8 | 4.5 | V | | | SCL and SDA pins: | | | | | | | High level input voltage | Vih | Vcc x 0.7 | Vcc + 1 | V | | | Low level input voltage | VIL | -0.3 | Vcc x 0.3 | V | | | Low level output voltage | Vol | | 0.4 | V | IOL = 3.2 mA (SDA only) | | A1 & A2 pins: | | | | | | | High level input voltage | VIH | Vcc - 0.5 | Vcc + 0.5 | V | | | Low level input voltage | VIL | -0.3 | 0.5 | V | | | Input leakage current | ILI | 1 | 10 | μΑ | VIN = 0V to VCC | | Output leakage current | ILO | 1 | 10 | μΑ | Vout = 0V to Vcc | | Pin capacitance | CIN, | _ | 7.0 | pF | VIN/VOUT = 0V (Note) | | (all inputs/outputs) | Соит | | | - | Tamb = +25°C, f = 1 MHz | | Operating current | Icc Write | _ | 3.5 | mA | FCLK = 100 kHz, program cycle time = 1 ms, Vcc = 5V, Tamb = 0°C to +70°C | | | Icc Write | _ | 4.25 | mA | FCLK = 100 kHz, program cycle time = 1 ms, Vcc = 5V, Tamb = (I) and (E) | | | Icc
Read | | 750 | μΑ | Vcc = 5V, Tamb= (C), (I) and (E) | | Standby current | Iccs | | 100 | μA | SDA=SCL=Vcc=5V (no PROGRAM active)
WP/TEST = Vss, A0, A1, A2 = Vss | Note: This parameter is periodically sampled and not 100% tested FIGURE 1-1: BUS TIMING START/STOP **TABLE 1-3: AC CHARACTERISTICS** | Parameter | Symbol | Min. | Тур | Max. | Units | Remarks | |---|---------|------|-----|------|--------|---| | Clock frequency | FCLK | _ | _ | 100 | kHz | | | Clock high time | THIGH | 4000 | | _ | ns | | | Clock low time | TLOW | 4700 | | _ | ns | | | SDA and SCL rise time | Tr | _ | | 1000 | ns | | | SDA and SCL fall time | TF | _ | | 300 | ns | | | START condition hold time | THD:STA | 4000 | _ | | ns | After this period the first clock pulse is generated | | START condition setup time | Tsu:Sta | 4700 | _ | | ns | Only relevant for repeated START condition | | Data input hold time | THD:DAT | 0 | _ | _ | ns | | | Data input setup time | Tsu:Dat | 250 | | _ | ns | | | Data output delay time | TAA | 300 | | 3500 | | (Note 1) | | STOP condition setup time | Tsu:Sto | 4700 | | _ | ns | | | Bus free time | TBUF | 4700 | _ | _ | ns | Time the bus must be free before a new transmission can start | | Input filter time constant (SDA and SCL pins) | Tı | _ | _ | 100 | ns | | | Program cycle time | Twc | _ | .4 | 1 | ms | Byte mode | | | | | .4N | N | ms | Page mode, N=# of bytes | | Endurance | _ | 1M | _ | _ | cycles | 25°C, Vcc = 5.0V, Block
Mode (Note 2) | - Note 1: As transmitter the device must provide this internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions. - 2: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our website. ## FIGURE 1-2: BUS TIMING DATA ## 2.0 FUNCTIONAL DESCRIPTION The 24C04A supports a bidirectional two wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, and a device receiving data as receiver. The bus has to be controlled by a master device which generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions, while the 24C04A works as slave. Both master and slave can operate as transmitter or receiver but the master device determines which mode is activated. Up to four 24C04As can be connected to the bus, selected by A1 and A2 chip address inputs. A0 must be tied to Vcc or Vss. ## 3.0 BUS CHARACTERISTICS The following bus protocol has been defined: - Data transfer may be initiated only when the bus is not busy. - During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition. Accordingly, the following bus conditions have been defined (Figure 3-1). ## 3.1 Bus not Busy (A) Both data and clock lines remain HIGH. #### 3.2 Start Data Transfer (B) A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition. ## 3.3 Stop Data Transfer (C) A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition. ## 3.4 Data Valid (D) The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the master device and is theoretically unlimited. ## 3.5 Acknowledge Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit. **Note:** The 24C04A does not generate any acknowledge bits if an internal programming cycle is in progress. The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition. ## 4.0 SLAVE ADDRESS The chip address inputs A1 and A2 must be externally connected to either Vcc or ground (Vss), thereby assigning a unique address to each device. A0 is not used on the 24C04A and must be connected to either Vcc or Vss. Up to four 24C04A devices may be connected to the bus. Chip selection is then accomplished through software by setting the bits A1 and A2 of the slave address to the corresponding hard-wired logic levels of the selected 24C04A. After generating a START condition, the bus master transmits the slave address consisting of a 4-bit device code (1010), followed by the chip address bits A0, A1 and A2. The seventh bit of that byte (A0) is used to select the upper block (addresses 100—1FF) or the lower block (addresses 000—0FF) of the array. The eighth bit of the slave address determines if the master device wants to read or write to the 24C04A (Figure 4-1). The 24C04A monitors the bus for its corresponding slave address all the time. It generates an acknowledge bit if the slave address was true and it is not in a programming mode. FIGURE 4-1: SLAVE ADDRESS ALLOCATION ## 5.0 BYTE PROGRAM MODE In this mode, the master sends addresses and one data byte to the 24C04A. Following the START signal from the master, the device code (4-bits), the slave address (3-bits), and the R/\overline{W} bit, which is logic LOW, are placed onto the bus by the master. This indicates to the addressed 24C04A that a byte with a word address will follow after it has generated an acknowledge bit. Therefore the next byte transmitted by the master is the word address and will be written into the address pointer of the 24C04A. After receiving the acknowledge, the master device transmits the data word to be written into the addressed memory location. The 24C04A acknowledges again and the master generates a STOP condition. This initiates the internal programming cycle (Figure 6-1). ## 6.0 PAGE PROGRAM MODE To program the master sends addresses and data to the 24C04A which is the slave (Figure 6-1 and Figure 6-2). This is done by supplying a START condition followed by the 4-bit device code, the 3-bit slave address, and the R/W bit which is defined as a logic LOW for a write. This indicates to the addressed slave that a word address will follow so the slave outputs the acknowledge pulse to the master during the ninth clock pulse. When the word address is received by the 24C04A, it places it in the lower 8 bits of the address pointer defining which memory location is to be written. (The A0 bit transmitted with the slave address is the ninth bit of the address pointer). The 24C04A will generate an acknowledge after every 8-bits received and store them consecutively in a RAM (8 bytes maximum) buffer until a STOP condition is detected. This STOP condition initiates the internal programming cycle.. If more than 8 bytes are transmitted by the master, the 24C04A will roll over and overwrite the data beginning with the first received byte. This does not affect erase/ write cycles of the EEPROM array and is accomplished as a result of only allowing the address registers bottom 3 bits to increment while the upper 5 bits remain unchanged. If the master generates a STOP condition after transmitting the first data word (Point 'P' on Figure 6-1), byte programming mode is entered. The internal, completely self-timed PROGRAM cycle starts after the STOP condition has been generated by the master and all received data bytes in the page buffer will be written in a serial manner. The PROGRAM cycle takes N milliseconds, whereby N is the number of received data bytes. FIGURE 6-1: BYTE WRITE FIGURE 6-2: PAGE WRITE ## 7.0 ACKNOWLEDGE POLLING Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write command ($R/\overline{W} = 0$). If the device is still busy with the write cycle, then no ACK will be returned. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 7-1 for flow diagram. FIGURE 7-1: ACKNOWLEDGE POLLING FLOW ## 8.0 WRITE PROTECTION Programming of the upper half of the memory will not take place if the WP pin is connected to Vcc (+5.0V). The device will accept slave and word addresses but if the memory accessed is write protected by the WP pin, the 24C04A will not generate an acknowledge after the first byte of data has been received, and thus the program cycle will not be started when the STOP condition is asserted. ## 9.0 READ MODE In this mode the 24C04A transmits data to the master devide. As can be seen from Figure 9-2 and Figure 9-3, the master first sets up the slave and word addresses by doing a write. (Note: Although this is a read mode, the address pointer must be written to). During this period the 24C04A generates the necessary acknowledge bits as defined in the appropriate section. The master now generates another START condition and transmits the slave address again, except this time the read/write bit is set into the read mode. After the slave generates the acknowledge bit, it then outputs the data from the addressed location on to the SDA pin, increments the address pointer and, if it receives an acknowledge from the master, will transmit the next consecutive byte. This auto-increment sequence is only aborted when the master sends a STOP condition instead of an acknowledge. - **Note 1:** If the master knows where the address pointer is, it can begin the read sequence at the current address (Figure 9-1) and save time transmitting the slave and word addresses. - **Note 2:** In all modes, the address pointer will not increment through a block (256 byte) boundary, but will rotate back to the first location in that block. ## FIGURE 9-1: CURRENT ADDRESS READ ### FIGURE 9-2: RANDOM READ ## FIGURE 9-3: SEQUENTIAL READ ## 10.0 PIN DESCRIPTION ## 10.1 A0, A1, A2 Chip Address Inputs A0 is not used as a chip select bit and must be tied to either Vss or Vcc. The levels on the remaining two address inputs(A1, A2) are compared with the corresponding bits in the slave address. The chip is selected if the compare is true. These inputs must be connected to either Vss or Vcc. These two address inputs allow up to four 24C04A's can be connected to the bus ## 10.2 SDA Serial Address/Data Input/Output This is a bidirectional pin used to transfer addresses and data into and data out of the device. It is an open drain terminal, therefore the SDA bus requires a pull-up resistor to Vcc (typical $10K\Omega$). For normal data transfer, SDA is allowed to change only during SCL LOW. Changes during SCL HIGH are reserved for indicating the START and STOP conditions. ## 10.3 SCL Serial Clock This input is used to synchronize the data transfer from and to the device. ## 10.4 WP Write Protection This pin must be connected to either VCC or Vss. If tied to VCC, write operations to the upper memory block will not be executed. Read operations are possible. If tied to VSS, normal memory operation is enabled (read/write the entire memory). This feature allows the user to assign the upper half of the memory as ROM which can be protected against accidental programming. When write is disabled, slave address and word address will be acknowledged but data will not be acknowledged. - **Note 1:** A "page" is defined as the maximum number of bytes that can be programmed in a single write cycle. The 24C04A page is 8 bytes long. - Note 2: A "block" is defined as a continuous area of memory with distinct boundaries. The address pointer can not cross the boundary from one block to another. It will however, wrap around from the end of a block to the first location in the same block. The 24C04A has two blocks, 256 bytes each. ## **24C04A Product Identification System** To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices. ## **Sales and Support** #### **Data Sheets** Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: - Your local Microchip sales office - The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277 - 2. 3. The Microchip Worldwide Web Site (www.microchip.com) #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 === Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. ## WORLDWIDE SALES AND SERVICE #### **AMERICAS** #### **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: www.microchip.com #### Atlanta 3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307 #### **Boston** 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821 ## Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 #### Dallas 16200 Addison Road, Suite 255 Addison Plaza Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 #### Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 ### Kokomo 2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387 #### Los Angeles 25950 Acero St., Suite 200 Mission Viejo, CA 92691 Tel: 949-462-9523 Fax: 949-462-9608 #### San Jose 1300 Terra Bella Avenue Mountain View, CA 94043 Tel: 650-215-1444 Fax: 650-961-0286 #### Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC ## Australia Microchip Technology Australia Pty Ltd Unit 32 41 Rawson Street Epping 2121, NSW Sydney, Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 #### China - Beijing Unit 706B Wan Tai Bei Hai Bldg. No. 6 Chaoyangmen Bei Str. Beijing, 100027, China Tel: 86-10-85282100 Fax: 86-10-85282104 ## China - Chengdu Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599 #### China - Fuzhou Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 #### China - Hong Kong SAR Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 #### China - Shanghai Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 #### China - Shenzhen Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033, China Tel: 86-755-82901380 Fax: 86-755-8295-1393 ## China - Shunde Room 401, Hongjian Building, No. 2 Fengxiangnan Road, Ronggui Town, Shunde District, Foshan City, Guangdong 528303, China Tel: 86-757-28395507 Fax: 86-757-28395571 #### China - Qingdao Rm. B505A, Fullhope Plaza, No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 #### India Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-22290061 Fax: 91-80-22290062 #### Japan Yusen Shin Yokohama Building 10F 3-17-2, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 #### Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 #### **Singapore** 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 #### Taiwan Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4816 Fax: 886-7-536-4817 #### Taiwan Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 #### Taiwan Taiwan Branch 13F-3, No. 295, Sec. 2, Kung Fu Road Hsinchu City 300, Taiwan Tel: 886-3-572-9526 Fax: 886-3-572-6459 #### **EUROPE** #### Austria Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 #### Denmark Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45-4420-9895 Fax: 45-4420-9910 #### France Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 ## Germany Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 #### Italy Via Salvatore Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611 Fax: 39-0331-466781 #### Netherlands Waegenburghtplein 4 NL-5152 JR, Drunen, Netherlands Tel: 31-416-690399 ## Fax: 31-416-690340 United Kingdom 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820 07/12/04