
Vishay Techno

3/8" [9.52mm] Sq. Wirewound Trimmers

APPLICATIONS

Wirewound trimmers are particularly useful in those applications where any combination of high power, low temperature coefficient of resistance and/or excellent long term life stability are important design considerations.

ELECTRICAL SPECIFICATIONS

Electrical Travel: 22 ± 4 turns.

Resistance Range: 10 ohms to 10 kilohms. Extended range available in non MIL-Spec product.

Resistance Tolerance: $\pm\,5\%$ standard. Closer tolerances available.

Temperature Coefficient: $(-65^{\circ}C \text{ to } + 150^{\circ}C) \pm 50PPM/^{\circ}C$. Power Rating: 1.0 watt at + 85°C derated to 0 watt at

+ 150°C. These specifications exceed MIL-Spec. End Resistance: 1 ohm or 2%, whichever is greater.

Equivalent Noise Resistance (ENR): 100 ohms maximum.

Dielectric (DWV): 1000 VAC at atmospheric pressure. These specifications exceed MIL-Spec.

Insulation Resistance: >100,000 Megohms (500 VDC). These specifications exceed MIL-Spec.

MECHANICAL SPECIFICATIONS

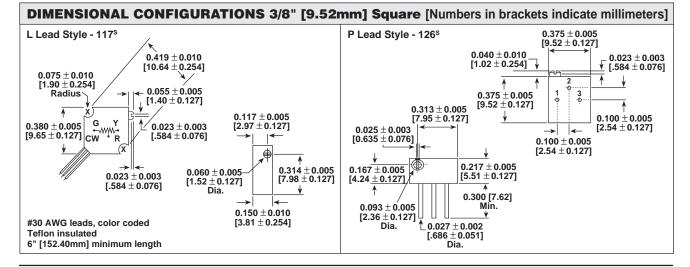
Operating Torque: 5 ounce inch maximum. Rotation: Clutch stop, wiper idles. Weight: 0.935 grams maximum. Resistive Element: Nickel chromium. Rotational Life: 200 cycles minimum. Terminal Strength: 2 pounds for 10 seconds.

ENVIRONMENTAL SPECIFICATIONS

Temperature Limits: - 65°C to + 150°C. **Sealing:** Fully sealed case (non-hermetic).

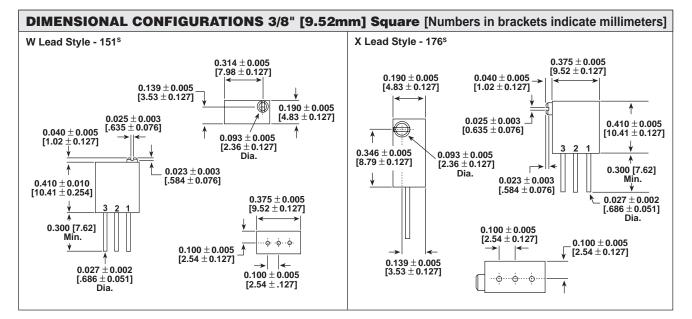
FEATURES

- Precious metal wiper.
- 1.0 watt to + 85°C.
- TCR ± 50PPM/°C.
- Solderable leads.
- Military quality at affordable prices.


STANDARD RESISTANCE VALUES

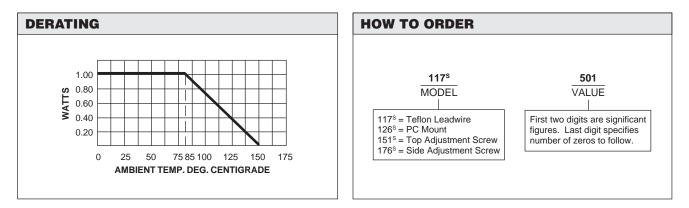
RESISTANCE* (Ohms)	NOMINAL RESOLUTION (%)		
10	1.10		
20	.85		
50	.65		
100	.51		
200	.40		
500	.45		
1k	.34		
2k	.27		
5k	.20		
10k	.16		
20k	.13		
25k	.12		
35k	.11		
50k	.10		

*Other resistances available upon request.


CIRCUIT DIAGRAM

 $\begin{array}{c} & & \\ 1 & & \\ & &$

Vishay Techno



ENVIRONMENTAL PERFORMANCE				
TEST ¹		CONDITIONS	MIL-PRF-39015 REQUIREMENT	TYPICAL CHANGE
Power Conditioning	(108)	50 hours at 1 watt at + 25°C	$\Delta R \le 0.5\%^2$	ΔR < 0.08%
Thermal Shock	(107)	5 cycles, -55°C to + 125°C	$\Delta R \le 1.0\%^2$	$\Delta R < 0.07\%$
Low Temperature Storage		72 hours, no load at - 65°C	$\Delta R \le 1.0\%^2$	$\Delta R < 0.05\%$
Low Temperature Operation		1 hour storage, 45 minutes rated power at - 55°C	$\Delta R \le 1.0\%^{2,3}$	ΔR < 0.08%
High Temperature Exposure		1000 hours, no load at + 150°C	$\Delta R \le 1.0\%^{2,3}$	$\Delta R < 0.03\%$
Moisture Resistance	(106)	480 hours at rated power with humidity ranging from 80% RH to 98% RH	$\Delta R \le 1.0\%^2$	∆R < 0.22%
Resistance to Soldering Heat	(210)	+ 350°C for 3 seconds	$\Delta R \le 1.0\%^2$	ΔR < 0.02%
Shock	(213)	18 shocks, 100g, 6 ms, sawtooth, 3 axes	$\Delta R \le 1.0\%^{2,3}$	∆R < 0.27%
Vibration	(204)	10 to 2000 Hz, 20g, 12 hours, 3 axes	$\Delta R \le 1.0\%^{2,3}$	ΔR < 0.04%
Rotational Life		200 cycles	$\Delta R \le 2.0\%$	∆R < 0.06%
Load Life	(108)	10,000 hours at rated power at + 85°C	$\Delta R \le 3.0\%$	ΔR < 0.23%

¹Numbers in parenthesis refer to test method MIL-STD-202 as modified by the detail specification.

²For values below 100 ohms, add 0.05 ohm to the allowable change.

³The referenced tests also require that setting stability change shall not exceed ± 0.05 percent plus the specified maximum resolution.

