

1090 MP

90 Watts, 50 Volts, Pulsed Avionics 1025 - 1150 MHz

GENERAL DESCRIPTION The 1090MP is a COMMON BASE bipolar tr pulsed systems in the frequency band 1025-11 includes input prematch for broadband capabi film metallization for proven highest MTTF. reduces junction temperature, extends life. ABSOLUTE MAXIMUM R	ransistor. It is designed for 50 MHz. The transistor lity. The device has gold thin- Low thermal resistance package	CASE OUTLINE 55FU, STYLE 1
Maximum Power Dissipation @ 25°C ²	250 Watts Peak	
Maximum Voltage and Current		
BVces Collector to Emitter Voltage	60 Volts	
BVebo Emitter to Base Voltage	4.0 Volts	
Ic Collector Current	6.0 Amps Peak	$ $ \backslash \rangle
Maximum Temperatures		
Storage Temperature	- 65 to +150 °C	
Operating Junction Temperature	+ 200°C	

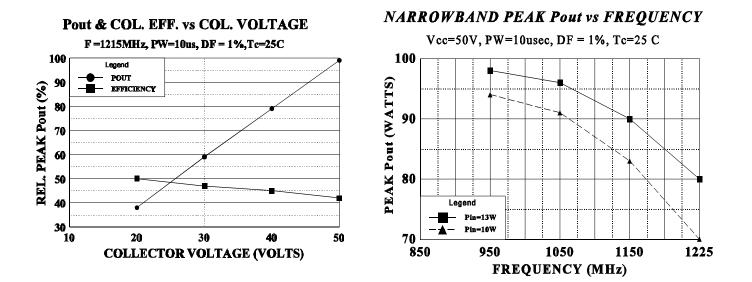
ELECTRICAL CHARACTERISTICS @ 25 °C

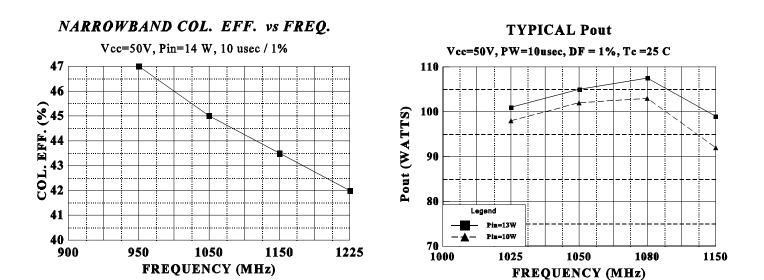
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Pout Pin Pg η _c VSWR	Broadband Power Out Power Input Broadband Power Gain Collector Efficiency Load Mismatch Tolerance	F = 1025-1150 MHz Vcc = 50 Volts PW = 10 µsec DF =1% F = 1090 MHz	90 8.0 35	98 8.5 38	14 10:1	Watts Watts d B %

BVeboEmitter to Base BreakdownBVcesCollector to Emitter BreakdownCobCapacitance Collector to BasehFEDC - Current Gainθjc1Thermal Resistance	Ie = 1 mA Ie = 10 mA Vcb = 50 V Ic = 500mA, Vcc = 5V $Tc = 25^{\circ}C$	3.5 65 15		16 120 0.6	Volts Volts pF °C/W	
---	---	-----------------	--	------------------	------------------------------	--

Note1: At Rated Power Output and pulse conditions.

2: Maximum Ratings are for RF Amplifier Operation

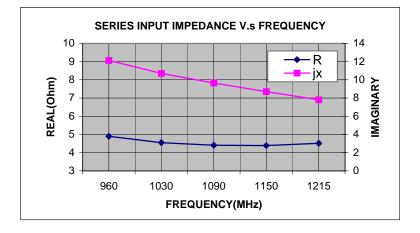

Issue Aug 1996

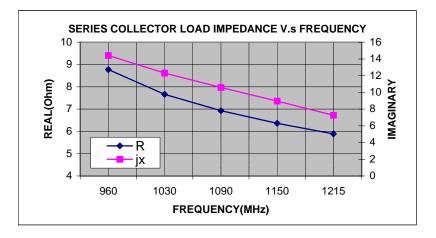

GHZ TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHZ RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.

GHz Technology Inc. 3000 Oakmead Village Drive, Santa Clara, CA 95051-0808 Tel. 408 / 986-8031 Fax 408 / 986-8120

1090 MP

August 1996


GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHz RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.


GHz Technology Inc. 3000 Oakmead Village Drive, Santa Clara, CA 95051-0808 Tel. 408 / 986-8031 Fax 408 / 986-8120

1090MP

VCB=50V Pout= 90Watts. PW 10uS, DF=1%

	Zin		ZCL	
Frequency	R	jx	R	jx
960	4.9	12.13	8.77	14.41
1030	4.55	10.71	7.66	12.3
1090	4.41	9.65	6.93	10.59
1150	4.39	8.7	6.36	8.95
1215	4.51	7.81	5.89	7.26

	F 2 A 4X 3
C Gold Plated	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$ $\begin{array}{c} & & & \\ & & \\ & & \\ \end{array}$ $\begin{array}{c} & & \\ & & \\ & & \\ \end{array}$ $\begin{array}{c} & & \\ \end{array}$ $\begin{array}{c} & & \\ \end{array}$ $\begin{array}{c} & & \\ \end{array}$ $\begin{array}{c} & & \\ & \\ \end{array}$ $\begin{array}{c} & & \\ \end{array}$ \end{array} $\begin{array}{c} & & \\ \end{array}$ $\begin{array}{c} & & \\ \end{array}$ \end{array} \end{array} \end{array} $\begin{array}{c} & & \\ \end{array}$ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}
DIM MILLIMETER TOL INCHES TOL A 5.71 .13 .225 .005 B 7.11 DIA .13 .280 DIA .005 C 0.13 .02 .005 .001 D 1.40 .13 .055 .005 E 25.53 .64 1.005 .025 F 45° 5° 45° 5° G 3.94 REF .155 REF	3 = EMITTER
CH2 TECHNOLOGY RF - MICROWAVE SILICON POWER TRANSISTORS	dwg no. 55FU