Ordering Information

| $\mathrm{BV}_{\text {DSS }} /$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{BV}_{\mathrm{DGS}}$ |

${ }^{\dagger}$ MIL visual screening available

High Reliability Devices

See pages 5-4 and 5-5 for MILITARY STANDARD Process
Flows and Ordering Information.

Features

- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low $\mathrm{C}_{\text {ISS }}$ and fast switching speeds
- Excellent thermal stability
- Integral Source-Drain diode
- High input impedance and high gain
- Complementary N - and P-channel devices

Applications

- Motor controls
- Converters
- Amplifiers
- Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

Absolute Maximum Ratings	
Drain-to-Source Voltage	$\mathrm{BV}_{\text {DSS }}$
Drain-to-Gate Voltage	$\mathrm{BV}_{\text {DGS }}$
Gate-to-Source Voltage	$\pm 20 \mathrm{~V}$
Operating and Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature	$300^{\circ} \mathrm{C}$

* Distance of 1.6 mm from case for 10 seconds.

Advanced DMOS Technology

These enhancement-mode (normally-off) transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Options

05/19/03

Thermal Characteristics

Package	I_{D} (continuous)	I_{D} (pulsed)	Power Dissipation $@ \mathbf{T}_{\mathbf{C}}=25^{\circ} \mathbf{C}$	$\boldsymbol{\theta}_{\mathrm{jc}}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	$\boldsymbol{\theta}_{\mathrm{ja}}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	$\mathrm{I}_{\mathrm{DR}}{ }^{*}$	$\mathrm{I}_{\mathrm{DRM}}$
TO-3	-1.5 A	-3.0 A	100 W	1.25	30	-1.5 A	-3.0 A
TO-220	-1.0 A	-3.0 A	50 W	2.5	40	-1.0 A	-3.0 A

${ }^{*} I_{D}$ (continuous) is limited by max rated T_{j}.

Electrical Characteristics (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: 300μ sulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

Typical Performance Curves

Output Characteristics

Transconductance vs. Drain Current

Maximum Rated Safe Operating Area

Saturation Characteristics

Power Dissipation vs. Case Temperature

Thermal Response Characteristics

Typical Performance Curves

$B V_{\text {DSS }}$ Variation with Temperature

Transfer Characteristics

Capacitance vs. Drain-to-Source Voltage

On-Resistance vs. Drain Current

Gate Drive Dynamic Characteristics

