SANYO Semiconductors DATA SHEET

 8-bit 1-chip Microcontroller

Overview

The LC877816A is an 8-bit single chip microcontroller with the following on-chip functional blocks:

- CPU: operable at a minimum bus cycle time of 250 ns
- ROM: 16 Kbytes
- RAM: 512×9 bits
- LCD controller/driver
- 16 bit timer $\times 2$ ch +8 bit timer $\times 1$ ch or more
- Synchronous serial I/O port (with automatic block transmit/receive function)
- Asynchronous/synchronous serial I/O port
- System clock divider
- 8-bit AD converter \times 9-channel
- 17-source 10 -vectored interrupt system
- Power save mode

All of the above functions are fabricated on a single chip.
Features
■ROM

- 16384×8 bits
-RAM
- 512×9 bits

■Minimum Bus Cycle Time

- 250ns (4MHz)

Note: The bus cycle time indicates ROM read time.
■Minimum Instruction Cycle Time (tCYC)

- 750ns (4MHz)
\square Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

■ Power Save Mode

- Power save mode is available, when system clock is RC oscillation or crystal oscillation.

■ Ports

- Input/output ports

Data direction programmable for each bit individually: 12 (P1n, P70 to P73)
Data direction programmable in nibble units: 8 (P0n)
(When N-channel open drain output is selected, data can be input in bit units.)

- LCD ports

Segment output:

24 (S00 to S23)
4 (COM0 to COM3)
5 (V1 to V3, CUP1, CUP2)
8(PCn)
4 (CF1, CF2, XT2, XT1)
1 ($\overline{\mathrm{RES}}$)
4 (VSS1 to 2, $\mathrm{V}_{\mathrm{DD}} 1$ to 2)
1 (VDC)

Common output:
Bias terminals for LCD driver
4 (COM0 to COM3)

Other functions
Input/output ports: 8(PCn)

- Oscillator pins:
- Reset pin:
- Power supply:

4 (VSS1 to 2, $\mathrm{V}_{\mathrm{DD}} 1$ to 2)
1 (VDC)

■LCD Controller

- Seven display modes are available.
- Segment output (S16 to S23) can be switched to general purpose input/output ports.
- Duty: 1/3duty, 1/4duty
- Bias: 1/2bias, 1/3bias
- LCD power

1) $1 / 3$ bias $\mathrm{V} 1: 1.2 \mathrm{~V}$ to 1.8 V

V : 2.4 V to 3.6 V
V3: 3.6 V to 5.4 V
2) $1 / 2$ bias $\mathrm{V} 1: 1.2 \mathrm{~V}$ to 1.8 V

V2: 2.4 V to 3.6 V
V3: 2.4 V to 3.6 V
(connect V2 and V3)

Timers

- Timer 0: 16 bit timer/counter with capture register

Mode 0: 2 channel 8-bit timer with programmable 8 bit prescaler and 8 bit capture register
Mode 1: 8 bit timer with 8 bit programmable prescaler and 8 bit capture register
+8 bit counter with 8-bit capture register
Mode 2: 16 bit timer with 8 bit programmable prescaler and 16 bit capture register
Mode 3: 16 bit counter with 16 bit capture register

- Timer 1: PWM/16 bit timer/counter with toggle output function

Mode 0: 2 channel 8 bit timer/counter (with toggle output)
Mode 1: 2 channel 8 bit PWM
Mode 2: 16 bit timer/counter (with toggle output) Toggle output from lower 8 bits is also possible.
Mode 3: 16 bit timer (with toggle output) Lower order 8 bits can be used as PWM.

- Timer 4: 8-bit timer with 6-bit prescaler
- Timer 5: 8-bit timer with 6-bit prescaler
- Timer 6: 8-bit timer with 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with 6-bit prescaler (with toggle output)
- Base Timer

1) The clock signal can be selected from any of the following :

Sub-clock (32.768 kHz crystal oscillator), system clock, and prescaler output from timer 0
2) Interrupts of five different time intervals are possible.
-SIO

- SIO0: 8 bit synchronous serial interface

1) LSB first/MSB first is selectable
2) Internal 8 bit baud-rate generator (fastest clock period $4 / 3$ tCYC)
3) Consecutive automatic data communication (1 to 256 bits)

- SIO1: 8 bit asynchronous/synchronous serial interface

Mode 0: Synchronous 8 bit serial I/O (2-wire or 3-wire, transmit clock 2 to 512 tCYC)
Mode 1: Asynchronous serial I/O (half duplex, 8 data bits, 1 stop bit, baud rate 8 to 2048 tCYC)
Mode 2: Bus mode 1 (start bit, 8 data bits, transmit clock 2 to 512 tCYC)
Mode 3: Bus mode 2 (start detection, 8 data bits, stop detection)

■AD Converter:

- 8 bits $\times 9$ Channels

■Remote Control Receiver Circuit (connected to P73/INT3/T0IN terminal)

- Noise rejection function (noise rejection filter's time constant can be selected from 1/32/128 tCYC)

Watchdog Timer

- Watchdog timer can produce interrupt or system reset.
- Watchdog timer has two types.

1) Use an external RC circuit
2) Use the microcontroller's base timer

Interrupts

- 17 sources, 10 vectors

1) Three priority (low, high and highest) multiple interrupts are supported. During interrupt handling, an equal or lower priority interrupt request is postponed.
2) If interrupt requests to two or more vector addresses occur at once, the higher priority interrupt takes precedence. In the case of equal priority levels, the vector with the lowest address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003 H	X or L	INT0
2	0000 BH	X or L	INT1
3	00013 H	H or L	INT2/TOL
4	0001 BH	H or L	INT3/Base timer
5	00023 H	H or L	TOH
6	0002 BH	H or L	T1L/T1H
7	00033 H	H or L	SIO0
8	0003 BH	H or L	SIO1
9	00043 H	H or L	ADC/T6/T7
10	$0004 B H$	H or L	Port 0/T4/T5

- Priority levels X > H > L
- For equal priority levels, vector with lowest address takes precedence.

Subroutine Stack Levels

- 256 levels maximum (the stack is allocated in RAM)

High-speed Multiplication/Division Instructions

- 16 bits $\times 8$ bits (5 tCYC execution time)
- 24 bits $\times 16$ bits (12 tCYC execution time)
- 16 bits $\div 8$ bits (8 tCYC execution time)
- 24 bits $\div 16$ bits (12 tCYC execution time)

■ Oscillation Circuits

- On-chip RC oscillation for system clock use.
- CF oscillation (4MHz) for system clock use. (Rf built in)
- Crystal oscillation (32.768 kHz) low speed system clock use. (Rf built in)

System Clock Divider Function

- Low power consumption operation is available
- Minimum instruction cycle time $(0.75 \mu \mathrm{~s}, 1.5 \mu \mathrm{~s}, 3 \mu \mathrm{~s}, 6 \mu \mathrm{~s}, 12 \mu \mathrm{~s}, 24 \mu \mathrm{~s}, 48 \mu \mathrm{~s}, 96 \mu \mathrm{~s}, 192 \mu \mathrm{~s}$ can be switched by program (when using 4 MHz main clock)

Standby Function

- HALT mode: HALT mode is used to reduce power consumption. During the HALT mode, program execution is stopped but peripheral circuits keep operating (some parts of serial transfer operation stop.)

1) Oscillation circuits are not stopped automatically.
2) Released by the system reset or interrupts.

- HOLD mode: HOLD mode is used to reduce power consumption. Program execution and peripheral circuits are stopped.

1) CF, RC and crystal oscillation circuits stop automatically.
2) Released by any of the following conditions.
(1) Low level input to the reset pin
(2) Specified level input to one of INT0, INT1, INT2
(3) Port 0 interrupt

- X'tal HOLD mode: X'tal HOLD mode is used to reduce power consumption. Program execution is stopped.

All peripheral circuits except the base timer are stopped.

1) CF and RC oscillation circuits stop automatically.
2) Crystal oscillator operation is kept in its state at HOLD mode inception.
3) Released by any of the following conditions
(1) Low level input to the reset pin
(2) Specified level input to one of INT0, INT1, INT2
(3) Port 0 interrupt
(4) Base-timer interrupt

Debugger

- On chip debugger (LC87F7032A)

LC87F7032A and LC877816A differ in following points.
When LC87F7032A is power save mode, Current consumption doesn't decrease.
When LC87F7032A is power save mode, X'tal voltage level doesn't change.
LC87F7032A has P2 registers (P2, P2DDR). But, LC877816A doesn't have them.

-Package Form

- TQFP64J(7×7): Lead-free type
- QIP64E(14×14): Lead-free type

Package Dimensions

unit : mm (typ)
3289

Package
unit: mm (typ)
3159A

Pin Assignment

SANYO: TQFP64J(7×7) "Lead-free Type" SANYO: QIP64E(14×14) "Lead-free Type"

System Block Diagram

Pin Description

Pin name	I/O	Function					Option
$\mathrm{V}_{\mathrm{SS}}{ }^{1,} \mathrm{~V}_{\mathrm{SS}}{ }^{2}$		- Power supply					No
$\mathrm{V}_{\mathrm{DD}^{1}, \mathrm{~V}_{\mathrm{DD}}{ }^{2}}$		+ Power supply					No
VDC		+ Power supply					No
CUP1, CUP2		- Capacitor connecting terminals for step-up/step-down					No
PORTO P00 to P07	I/O	- 8bit input/output port - Data direction programmable in nibble units - Use of pull-up resistor can be specified in nibble units - Input for HOLD release - Input for port 0 interrupt - Other pin functions Input for ADC channel (ANO to AN4) P05: Clock output (system clock/subclock) When it's LC87F7032A, P05 uses as DBGP0. P06: Timer 6 toggle output When it's LC87F7032A, P06 uses as DBGP1. P07: Timer 7 toggle output When it's LC87F7032A, P07 uses as DBGP2.					Yes
PORT1 P10 to P17	I/O	- 8bit input/output port - Data direction programmable for each bit - Use of pull-up resistor can be specified for each bit individually - Other pin functions P10: SIO0 data output P11: SIO0 data input or bus input/output P12: SIO0 clock input/output P13: IO1 data output P14: SIO1 data input or bus input/output P15: SIO1 clock input/output P16: Timer 1 PWML output P17: Timer 1 PWMH output/Buzzer output					Yes
PORT7 P70 to P73	I/O	- 4bit Input/output port - Data direction can be specified for each bit - Use of pull-up resistor can be specified for each bit individually - Other functions P70: INT0 input/HOLD release input/TimerOL capture input/output for watchdog timer/AN5 P71: INT1 input/HOLD release input/Timer0H capture input/AN6 P72: INT2 input/HOLD release input/timer 0 event input/TimerOL capture input/AN7 P73: INT3 input (noise rejection filter attached)/timer 0 event input/Timer0H capture input/AN8 Input for ADC channel (AN5 to AN8) - Interrupt acknowledge type					No
S0 to S15	O	- Segment output for LCD					No
$\begin{aligned} & \text { S16/PC0 to } \\ & \text { S23/PC7 } \end{aligned}$	I/O	- Segment output for LCD - Can be used as general purpose input/output port (PC)					No
COM0 to COM3	O	- Common output for LCD					No
V1 to V3	I/O	- LCD output bias power supply - Capacitor connecting terminals for step-up/step-down					No
$\overline{\mathrm{RES}}$	1	- Reset terminal					No
XT1	1	- Input for 32.768 kHz crystal oscillation - When not in use, connect to $\mathrm{V}_{\mathrm{DD}}{ }^{2}$					No
XT2	I/O	- Output for 32.768 kHz crystal oscillation - When not in use, set to oscillation mode and leave open					No
CF1	I	- Input terminal for ceramic oscillator - When not in use, connect to $\mathrm{V}_{\mathrm{DD}}{ }^{2}$					No
CF2	O	- Output terminal for ceramic oscillator - When not in use, leave open					No

Port Output Types

Port form and pull-up resistor options are shown in the following table.
Port status can be read even when port is set to output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable(Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
$\begin{aligned} & \text { S16(PC0) to } \\ & \text { S23(PC7) } \end{aligned}$	-	1	CMOS,	No
		2	Pch-Open Drain	
		3	Nch-Open Drain	

Note 1: Attachment of Port0 programmable pull-up resistors is controllable in nibble units (P00 to 03, P04 to 07).
*1: Connect as follows to reduce noise on VDD.
$\mathrm{V}_{\mathrm{SS}} 1$ and $\mathrm{V}_{\mathrm{SS}} 2$ must be connected together and grounded.

*2: The power supply for the internal memory is $\mathrm{VDC} . \mathrm{V}_{\mathrm{DD}} 1$ and $\mathrm{V}_{\mathrm{DD}} 2$ are used as the power supply for ports. When $V_{D D} 1$ and $V_{D D} 2$ are not backed up, the port level does not become " H " even if the port latch is in the " H " level. Therefore, when $\mathrm{V}_{\mathrm{DD}} 1$ and $\mathrm{V}_{\mathrm{DD}}{ }^{2}$ are not backed up and the port latch is " H " level, the port level is unstable in the HOLD mode, and the back up time becomes shorter because the through current runs from VDD to GND in the input buffer. If $V_{D D} 1$ and $V_{D D} 2$ are not backed up, output "L" by the program or pull the port to "L" by the external circuit in the HOLD mode so that the port level becomes " L " level and unnecessary current consumption is prevented.

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=\mathrm{V}$ SS $2=0 \mathrm{~V}$

Parameter		Symbol	Pins/Remarks	Conditions		Specification				
		$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$			min	typ	max	unit		
Supply voltage			$\mathrm{V}_{\text {DD }}$ max	$\mathrm{V}_{\mathrm{DD}}{ }^{1,} \mathrm{~V}_{\mathrm{DD}}{ }^{2, \mathrm{~V} 2}$	$\mathrm{V}_{\mathrm{DD}}{ }^{1}=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V} 2$		-0.3		+4.3	V
Supply voltage For LCD		VLCD	V1,			-0.3		$1 / 2 \mathrm{~V}_{\text {DD }}$		
		V2			-0.3		V_{DD}			
		V3			-0.3		$3 / 2 \mathrm{~V}$ DD			
Input voltage			V_{1}	XT1, CF1, $\overline{\text { RES }}$			-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Input/Output voltage			$\mathrm{V}_{\mathrm{IO}}(1)$	- Porto, 1, 7 - PortC			-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
	Peak output current	IOPH(1)	Ports 0, 1, 7, C	- CMOS output selected - Current at each pin					mA	
	Total output current	$\Sigma \mathrm{IOAH}(1)$	Port 7	Total of all pins		-10				
		$\Sigma \mathrm{IOAH}(2)$	Port 0	Total of all pins		-25				
		ऽIOAH(3)	Port 1	Total of all pins		-25				
		ᄃIOAH(4)	Port C	Total of all pins		-15				
	Peak output current	IOPL(1)	Ports 02 to 07 Port 1, 7, C	Current at each pin				6		
		IOPL(2)	Port 00, 01	Current at each pin				15		
	Total output current	£IOAL(1)	Port 7	Total of all pins				10		
		£IOAL(2)	Port 0	Total of all pins				35		
		£IOAL(3)	Port 1	Total of all pins				25		
		EIOAL(4)	Port C	Total of all pins				15		
Allowable power dissipation		Pd max	TQFP64J(7×7)	Ta $=-30$ to $+70^{\circ} \mathrm{C}$				200	mW	
		QIP64E(14×14)					420			
Operating ambient temperature			Topr				-30		+70	${ }^{\circ} \mathrm{C}$
Storage ambient temperature		Tstg				-55		+125		

LC877816A

Allowable Operating Conditions at $\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=0 \mathrm{~V}$

Parameter	Symbol	Pins/Remarks	Conditions		Specification			
				V_{DD}	min	typ	max	unit
Operating supply voltage range	$\mathrm{V}_{\mathrm{DD}}(1)$	$\mathrm{V}_{\mathrm{DD}}{ }^{1}=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V} 2$ Normal mode	$0.37 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 200 \mu \mathrm{~s}$		3.0		3.6	V
	$\mathrm{V}_{\mathrm{DD}}(2)$		$0.75 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 200 \mu \mathrm{~s}$		2.4		3.6	
	$\mathrm{V}_{\mathrm{DD}}(3)$	$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V} 2$ Power save mode	$2.25 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 200 \mu \mathrm{~s}$		3.0		3.6	
	$\mathrm{V}_{\mathrm{DD}}(4)$		$4.28 \mu \mathrm{~s} \leq \mathrm{tCYC} \leq 200 \mu \mathrm{~s}$		2.4		3.6	
Supply voltage range in Hold mode	VHD	$\mathrm{V}_{\mathrm{DD}}{ }^{=} \mathrm{V}_{\mathrm{DD}}{ }^{2}=\mathrm{V} 2$	Keep RAM and register data in HOLD mode.		2.2		3.6	
Input high voltage	$\mathrm{V}_{\mathrm{IH}}(1)$	- Ports 1, 71 to 73 - Port 70 input/interrupt	Output disable	2.4 to 3.6	$\begin{array}{r} 0.3 \mathrm{~V}_{\mathrm{DD}} \\ +0.7 \end{array}$		$\mathrm{V}_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IH}}(2)$	- Ports 0, C	Output disable	2.4 to 3.6	$\begin{array}{r} 0.3 \mathrm{~V}_{\mathrm{DD}} \\ +0.7 \end{array}$		$V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IH}}(3)$	Port 70 Watchdog timer	Output disable	2.4 to 3.6	$0.9 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IH}}(4)$	XT1, CF1, $\overline{\text { RES }}$		2.4 to 3.6	$0.75 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	
Input low Voltage	$\mathrm{V}_{\mathrm{IL}}(1)$	- Ports 1, 71 to 73 - Port 70 input/interrupt	Output disable	2.4 to 3.6	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\text {DD }}$	
	$\mathrm{V}_{\text {IL }}(2)$	- Ports 0, C	Output disable	2.4 to 3.6	v_{SS}		$0.2 \mathrm{~V}_{\text {DD }}$	
	$\mathrm{V}_{\mathrm{IL}}(3)$	Port 70 Watchdog timer	Output disable	2.4 to 3.6	$\mathrm{V}_{\text {SS }}$		$\begin{array}{r} 0.8 \mathrm{~V}_{\mathrm{DD}} \\ -1.0 \\ \hline \end{array}$	
	$\mathrm{V}_{\mathrm{IL}}(4)$	XT1, CF1, $\overline{\text { RES }}$		2.4 to 3.6	V_{SS}		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
Operation cycle time	tCYC			2.4 to 3.6	2.25		200	us
					4.28		200	
External system clock frequency	FEXCF(1)	CF1	- CF2 open - system clock divider:1/1 - external clock DUTY=50 $\pm 5 \%$	2.4 to 3.6	0.1		4	MHz
Oscillation frequency range (Note 2-1)	FmCF	CF1, CF2	4 MHz ceramic resonator oscillation See fig. 1	2.4 to 3.6		4		MHz
	FmRC		RC oscillation $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	2.4 to 3.6	300	500	700	kHz
	FsX'tal	XT1, XT2	32.768 kHz crystal resonator oscillation See fig. 2	2.4 to 3.6		32.768		kHz

Note 2-1: The parts value of oscillation circuit is shown in table 1 and table 2.

Electrical Characteristics at $\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{V}$ SS $2=0 \mathrm{~V}$

Serial I/O Characteristics at $\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=0 \mathrm{~V}$

1. SIOO Serial I/O Characteristics (Note 4-1-1)

Parameter			Symbol	Pin/Remarks	Conditions		Specification				
			$\mathrm{V}_{\text {DD }}$			min	typ	max	unit		
	$\begin{aligned} & \text { 믐 } \\ & \text { 을 } \\ & \text { 흘 } \end{aligned}$	Frequency		tSCK(1)	SCK0(P12)	See Fig. 6.	2.4 to 3.6	2			tCYC
		Low level pulse width	tSCKL(1)	1							
		High level	tSCKH(1)	1							
			tSCKHA(1)	- Continuous data transmission/reception mode - See Fig. 6. - (Note 4-1-2)		4					
	$\begin{aligned} & \text { 믐 } \\ & \text { 음 } \\ & \text { I } \\ & \text { D } \end{aligned}$	Frequency	tSCK(2)	SCK0(P12)	- CMOS output selected - See Fig. 6.	2.4 to 3.6	4/3				
		Low level pulse width	tSCKL(2)				1/2			tSCK	
		High level pulse width	tSCKH(2)				1/2				
			tSCKHA(2)		- Continuous data transmission/reception mode - CMOS output selected - See Fig. 6.		$\begin{array}{r} \mathrm{tSCKH}(2) \\ +2 \mathrm{tCYC} \end{array}$		tSCKH(2) +(10/3) tCYC	tCYC	
	Data setup time		tsDI(1)	$\begin{aligned} & \text { SBO(P11), } \\ & \text { SIO(P11) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - See Fig. 6.	2.4 to 3.6	0.03			$\mu \mathrm{s}$	
	Data hold time		thDI(1)			2.4 to 3.6	0.03				
	$\begin{aligned} & \text { 늠 } \\ & \text { 응 } \\ & \text { 를 } \end{aligned}$	Output delay time	tdDO(1)	$\begin{aligned} & \text { SOO(P10), } \\ & \text { SB0(P11) } \end{aligned}$	- Continuous data transmission/reception mode - (Note 4-1-3)	2.4 to 3.6			$\begin{array}{r} (1 / 3) \mathrm{tCYC} \\ +0.05 \end{array}$		
			tdD0(2)		- Synchronous 8-bit mode - (Note 4-1-3)	2.4 to 3.6			$\begin{array}{r} 1 \mathrm{tCYC} \\ +0.05 \end{array}$		
	$\begin{aligned} & \text { 믐 } \\ & \text { O} \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		tdDO(3)		- (Note 4-1-3)	2.4 to 3.6			$\begin{array}{r} (1 / 3) \mathrm{tCYC} \\ +0.15 \end{array}$		

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.
Note 4-1-2: To use serial-clock-input in continuous trans/rec mode, a time from SIORUN being set when serial clock is " H " to the first negative edge of the serial clock must be longer than tSCKHA.
Note 4-1-3: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 6.
2. SIO1 Serial I/O Characteristics (Note 4-2-1)

Parameter			Symbol	Pin/Remarks	Conditions		Specification				
			$V_{\text {DD }}$			min	typ	max	unit		
		Frequency		tSCK(3)	SCK1(P15)	See Fig. 6.	2.4 to 3.6	2			tCYC
		Low level pulse width	tSCKL(3)	1							
		High level pulse width	tSCKH(3)	1							
		Frequency	tSCK(4)	SCK1(P15)	- CMOS output selected - See Fig. 6.	2.4 to 3.6	2				
		Low level pulse width	tSCKL(4)				1/2			tSCK	
		High level pulse width	tSCKH (4)				1/2				
	Data setup time		tsDI(2)	$\begin{aligned} & \text { SB1(P14), } \\ & \text { SI1(P14) } \end{aligned}$	- Must be specified with respect to rising edge of SIOCLK. - See Fig. 6.	2.4 to 3.6	0.03				
	Data hold time		thDI(2)			2.4 to 3.6	0.03				
	Out	put delay time	tdD0(4)	$\begin{aligned} & \text { SO1(P13), } \\ & \text { SB1(P14) } \end{aligned}$	- Must be specified with respect to falling edge of SIOCLK. - Must be specified as the time to the beginning of output state change in open drain output mode. - See Fig. 6.	2.4 to 3.6			$\begin{array}{r} (1 / 3) \mathrm{tCYC} \\ +0.05 \end{array}$	$\mu \mathrm{s}$	

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.
Pulse Input Conditions at $\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}$ SS $1=\mathrm{V}$ SS $2=0 \mathrm{~V}$

Parameter	Symbol	Pins	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
High/low level pulse width	$\begin{aligned} & \hline \operatorname{tPIH}(1) \\ & \operatorname{tPIL}(1) \end{aligned}$	INTO(P70), INT1(P71), INT2(P72)	- Condition that interrupt is accepted - Condition that event input to timer 0 is accepted	2.4 to 3.6	1			tCYC
	$\begin{aligned} & \mathrm{tPIH}(2) \\ & \mathrm{tPIL}(2) \end{aligned}$	INT3(P73) (Noise rejection ratio is $1 / 1$.)	- Condition that interrupt is accepted - Condition that event input to timer 0 is accepted	2.4 to 3.6	2			
	$\begin{aligned} & \mathrm{tPIH}(3) \\ & \mathrm{tPIL}(3) \end{aligned}$	INT3(P73) (Noise rejection ratio is $1 / 32$.)	- Condition that interrupt is accepted - Condition that event input to timer 0 is accepted	2.4 to 3.6	64			
	$\begin{aligned} & \mathrm{tPIH}(4) \\ & \mathrm{tPIL}(4) \end{aligned}$	INT3(P73) (Noise rejection ratio is $1 / 128$.)	- Condition that interrupt is accepted - Condition that event input to timer 0 is accepted	2.4 to 3.6	256			
	tPIL(6)	$\overline{\mathrm{RES}}$	- Condition that reset is accepted	2.4 to 3.6	200			$\mu \mathrm{s}$

AD Converter Characteristics at $\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=0 \mathrm{~V}$

Parameter	Symbol	Pin/Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Resolution	N	ANO(POO) to AN4(P04), AN5(P70) to AN8(P73)				8		bit
Absolute accuracy	ET		(Note 6-1)				± 1.5	LSB
Conversion time	tCAD		AD conversion time $=32 \times$ tCYC (ADCR2=0) (Note 6-2) Normal mode	3.0 to 3.6	$\begin{array}{r} 22.4 \\ \text { (tCYC= } \\ 0.70 \mu \mathrm{~s}) \end{array}$		$\begin{array}{r} 640 \\ \text { (tCYC= } \\ 20 \mu \mathrm{~s}) \end{array}$	$\mu \mathrm{s}$
				2.4 to 3.6				
			AD conversion time $=32 \times t \mathrm{CYC}$ (ADCR2=0) (Note6-2) Power save mode	2.4 to 3.6	$\begin{array}{r} 128 \\ \text { (tCYC= } \\ 4.00 \mu \mathrm{~s}) \\ \hline \end{array}$		$\begin{array}{r} 640 \\ \text { (tCYC= } \\ 20 \mu \mathrm{~s}) \end{array}$	
			AD conversion time $=64 \times$ tCYC (When ADCR2=1) (Note 6-2) Normal mode	3.0 to 3.6	$\begin{array}{r} 44.8 \\ \text { (tCYC= } \\ 0.70 \mu \mathrm{~s}) \end{array}$		$\begin{array}{r} 1280 \\ \text { (tCYC= } \\ 20 \mu \mathrm{~s}) \\ \hline \end{array}$	
				2.4 to 3.6	$\begin{array}{r} 256 \\ \text { (tCYC= } \\ 4.00 \mu \mathrm{~s}) \end{array}$		$\begin{array}{r} 1280 \\ \text { (tCYC= } \\ 20 \mu \mathrm{~s}) \\ \hline \end{array}$	
			AD conversion time $=32 \times t \mathrm{CYC}$ (ADCR2=0) (Note6-2) Power save mode	2.4 to 3.6	$\begin{array}{r} 256 \\ \text { (tCYC= } \\ 4.00 \mu \mathrm{~s}) \end{array}$		$\begin{array}{r} 1280 \\ \text { (tCYC= } \\ 20 \mu \mathrm{~s}) \\ \hline \end{array}$	
Analog input voltage range	VAIN				VSS		$V_{\text {DD }}$	V
Analog port input current	IAINH		VAIN $=V_{\text {DD }}$				1	$\mu \mathrm{A}$
	IAINL		VAIN $=\mathrm{V}_{\text {SS }}$		-1			

Note 6-1: The quantization error ($\pm 1 / 2 \mathrm{LSB}$) is excluded from the absolute accuracy value.
Note 6-2: The conversion time refers to the interval from the time the instruction for starting the converter is issued till the time the complete digital value corresponding to the analog input value is loaded in the required register.

Consumption Current Characteristics at $\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{VSS} 1=\mathrm{VSS} 2=0 \mathrm{~V}$

Parameter	Symbol	Pins/ Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Current consumption during normal operation (Note 7-1)	IDDOP(1)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} 1= \\ & \mathrm{V}_{\mathrm{DD}}= \\ & \mathrm{V} 2 \end{aligned}$	- FmCF $=4 \mathrm{MHz}$ Ceramic resonator oscillation - FsX'tal=32.768kHz crystal oscillation - System clock: CF 4MHz oscillation - Internal RC oscillation stopped. - Divider: 1/1 - Normal mode	2.4 to 3.6		1100	3200	
	IDDOP(2)		- FmCF=0Hz (No oscillation) - FsX'tal=32.768kHz crystal oscillation - System clock: RC oscillation - Divider: 1/1 - Normal mode	2.4 to 3.6		150	600	
	IDDOP(3)		- FmCF=0Hz (No oscillation) - FsX'tal=32.768kHz crystal oscillation - System clock: RC oscillation - Divider: 1/1 - Power save mode	2.4 to 3.6		50	225	
	IDDOP(4)		- FmCF=0Hz (No oscillation) - FsX'tal=32.768kHz crystal oscillation - System clock: RC oscillation - Divider: 1/2 - Power save mode	2.4 to 3.6		40	180	
	IDDOP(5)		- FmCF=0Hz (No oscillation) - FsX'tal=32.768kHz crystal oscillation - System clock: 32.768 kHz - Internal RC oscillation stopped. - Divider: 1/1 - Normal mode	2.4 to 3.6		15	60	
	IDDOP(6)		- FmCF=0Hz (No oscillation) - FsX'tal=32.768kHz crystal oscillation - System clock: 32.768 kHz - Internal RC oscillation stopped. - Divider: 1/1 - Power save mode	2.4 to 3.6		2.5	17	$\mu \mathrm{A}$
	IDDOP(7)		- FmCF=0Hz (No oscillation) - FsX'tal=32.768kHz crystal oscillation - System clock: 32.768 kHz - Internal RC oscillation stopped. - Divider: 1/2 - Power save mode	2.4 to 3.6		1.5	15	
Current consumption during HALT mode (Note 7-1)	IDDHALT(1)		HALT mode - FmCF $=4 \mathrm{MHz}$ Ceramic resonator oscillation - FsX'tal=32.768kHz crystal oscillation - System clock: CF 4MHz oscillation - Internal RC oscillation stopped. - Divider: 1/1 - Normal mode	2.4 to 3.6		460	1600	
	IDDHALT(2)		HALT mode - FmCF=OH (Oscillation stop) - FsX'tal=32.768kHz crystal oscillation - System clock: RC oscillation - Divider: 1/1 - Normal mode	2.4 to 3.6		50	300	
	IDDHALT(3)		HALT mode - FmCF=OH (Oscillation stop) - FsX'tal=32.768kHz crystal oscillation - System clock: RC oscillation - Divider: $1 / 1$ - Power save mode	2.4 to 3.6		35	150	

Note 7-1: The currents through the output transistors and the pull-up MOS transistors are ignored.
Continued on next page.

Continued from preceding page.

Parameter	Symbol	Pins/ Remarks	Conditions		Specification			
				$\mathrm{V}_{\mathrm{DD}}[\mathrm{V}]$	min	typ	max	unit
Current consumption during HALT mode (Note 7-1)	IDDHALT(4)	$V_{D D^{1}}=$ $V_{D D^{2}}=$ V2	HALT mode - FmCF=OH (Oscillation stop) - FsX'tal=32.768kHz crystal oscillation - System clock: RC oscillation - Divider: 1/2 - Power save mode	2.4 to 3.6		30	135	
	IDDHALT(5)		HALT mode - FmCF=0Hz (Oscillation stop) - FsX'tal=32.768kHz crystal oscillation - System clock: 32.768 kHz - Internal RC oscillation stopped. - Divider: 1/1 - Normal mode	2.4 to 3.6		7.0	60	
	IDDHALT(6)		HALT mode - FmCF=0Hz (Oscillation stop) - FsX'tal=32.768kHz crystal oscillation - System clock: 32.768 kHz - Internal RC oscillation stopped. - Divider: 1/1 - Power save mode	2.4 to 3.6		1.0	15	
	IDDHALT(7)		HALT mode - FmCF=0Hz (Oscillation stop) - FsX'tal=32.768kHz crystal oscillation - System clock: 32.768 kHz - Internal RC oscillation stopped. - Divider: 1/2 - Power save mode	2.4 to 3.6		0.8	14	$\mu \mathrm{A}$
Current consumption during HOLD mode	IDDHOLD(1)		HOLD mode - CF1=V ${ }_{\text {DD }}$ or open (when using external clock)	2.4 to 3.6		0.03	30	
Current consumption during Date/time X'tal HOLD mode	IDDHOLD(2)		Date/time clock HOLD mode - CF1=V ${ }_{\text {DD }}$ or open (when using external clock) - FmX'tal=32.768kHz crystal oscillation - Internal RC oscillation stopped. - Divider: 1/1 - Normal mode	2.4 to 3.6		5.0	45	
	IDDHOLD(3)		Date/time clock HOLD mode - CF1=V ${ }_{\text {DD }}$ or open (when using external clock) - FmX'tal $=32.768 \mathrm{kHz}$ crystal oscillation - Internal RC oscillation stopped. - Divider: 1/1 - Power save mode	2.4 to 3.6		0.5	15	

Note 7-1: The currents through the output transistors and the pull-up MOS transistors are ignored.

Main System Clock Oscillation Circuit Characteristics

The characteristics in the table bellow is based on the following conditions:
Use the standard evaluation board SANYO has provided.
Use the peripheral parts with indicated value externally.
The peripheral parts value is a recommended value of oscillator manufacturer
Table 1. Main system clock oscillation circuit characteristics using ceramic resonator

Frequency	Manufacturer	Type	Oscillator	Circuit parameters			Operating supply voltage range[V]	Oscillation stabilizing time		Notes
				$\begin{gathered} \mathrm{C} 1 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{C} 2 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{Rd} \\ {[\Omega]} \end{gathered}$		$\begin{gathered} \text { typ } \\ \text { [ms] } \\ \hline \end{gathered}$	max [ms]	
4.00 MHz	Murata	SMD	CSTCR4M00G53-R0	(15)	(15)	1k	2.4 to 3.6	0.2	0.6	
		Lead	CSTLS4M00G53-B0	(15)	(15)	2.2 k	2.4 to 3.6	0.2	0.6	

The oscillation stabilizing time is a period until the oscillation becomes stable after V_{DD} becomes higher than minimum operating voltage. (See Fig. 4)

Subsystem Clock Oscillation Circuit Characteristics

The characteristics in the table bellow is based on the following conditions:
Use the standard evaluation board SANYO has provided.
Use the peripheral parts with indicated value externally.
The peripheral parts value is a recommended value of oscillator manufacturer
Table 2. Subsystem clock oscillation circuit characteristics using crystal oscillator

Frequency	Manufacturer	Oscillator	Circuit parameters				Operating supply voltage range [V]	Oscillation stabilizing time		Notes
			$\begin{gathered} \mathrm{C} 3 \\ {[\mathrm{pF}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} 4 \\ {[\mathrm{pF}]} \end{gathered}$	$\begin{gathered} \mathrm{Rf} \\ {[\Omega]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Rd} 2 \\ {[\Omega]} \\ \hline \end{gathered}$		$\begin{aligned} & \text { typ } \\ & \text { [s] } \\ & \hline \end{aligned}$	max [s]	
32.768 kHz	Epson Toyocom	MC-146	10	10	Open	0	2.4 to 3.6	1	3	

The oscillation stabilizing time is a period until the oscillation becomes stable after executing the instruction which starts the sub-clock oscillation or after releasing the HOLD mode. (See Fig. 4)

Notes: Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest possible pattern length.

Figure 1 Ceramic Oscillation Circuit

Figure 2 Crystal Oscillation Circuit

Figure 3 AC Timing Measurement Point

Reset Time and Oscillation Stabilization

HOLD Release Signal and Oscillation Stabilization
Figure 4 Oscillation Stabilizing Time

Note:
Select CRES and RRES value to assure that at least 200μ s reset time is generated after the VDD becomes higher than the minimum operating voltage.

Figure 5 Reset Circuit

Figure 6 Serial Input/Output Wave Form

Figure 7 Pulse Input Timing Signal Waveform

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of September, 2006. Specifications and information herein are subject to change without notice.

