
Rev. 0.1 9/05 Copyright © 2005 by Silicon Laboratories AN241

AN241

2.4 GHZ ZIGBEE™NETWORK APPLICATION INTERFACE PROGRAMMER'S GUIDE

1. Introduction
This document describes the Silicon Laboratories ZigBee Network Layer interface. It contains implementation
details specific to the Network-layer interface software library included as part of the Silicon Laboratories ZigBee
Development Kit.

This document should be used in conjunction with the ZigBee Alliance's Network Specification.

Current firmware releases do not support beacon-based networks or security.

2. Overview of Primitive Implementation
Messaging between the application layer and the network layer is implemented either by direct function calls or by
using a shared buffer. Primitives transmitted from the application layer to the network layer are implemented using
direct function calls.

In contrast, primitives sent from the network layer to the application layer are implemented differently. Indication
primitives notifying an event to the application layer will be stored in a shared buffer. The application layer needs to
poll this buffer for an incoming event.

Some confirmation primitives carry only one parameter, normally a status indicator corresponding to a request. The
parameter is conveyed as a return value of the requesting function call. Thus, there is no explicit implementation of
these primitives.

Other confirmation primitives contain more than one parameter. When a request is called, the function call of the
request will store the confirmation data to the shared buffer. The caller of the request shall check the buffer for
confirmation when the request returns.

Table 1. Primitive Implementation

Primitive Implementation

Request Direct function call

Confirm (one parameter) Return value of the request function call

Confirm (multiple parameters) Globally shared buffer

Indication Globally shared buffer

AN241

2 Rev. 0.1

3. Creating User Applications
The Application layer must start the ZigBee network in a specified sequence. This section describes initialization,
network startup, and joining procedures.

3.1. System Initialization
These functions should be called in order as the node is initially powered up.

Disable Global Interrupts:

DISABLE_GLOBAL_INT();

Initialize System Hardware:

SystemInit();

Initialize Transceiver:

CC2420Init();

Initialize Transceiver Interrupt:

EINT_Init ();

Initialize MAC Internal Variables and Default PIB settings:

MAC_Init();
macInitEnv();
mlmeResetRequest(FALSE);

Initialize NWK layer:

netInit();

Enable Global Interrupts:

ENABLE_GLOBAL_INT();

AN241

Rev. 0.1 3

3.2. Network-level Procedures
This section describes the processes of establishing, expanding, and dismantling a ZigBee network. Sections 4
and 5 describe each command primitive in detail.

A ZigBee network is established by the steps shown in Figure 1.

1. Reset and initialize each device as it is powered up.
2. Establish a ZigBee network by designating a Coordinator. The Coordinator calls specific primitives to form the network then

permits other nodes to join. Refer to section 3.2.2.
3. Once a network is formed, other devices may join the network and transfer data to other nodes within the network. Refer to

sections 3.2.3 and 3.2.4.
4. Devices may request removal from a network or a parent may force a node from the network. Refer to section 3.2.5.

Figure 1. ZigBee Network Formation

Reset

ZigBee Coordinator

Form Network

Permit other nodes to join network

Reset

Discover a network

Join a network

ZigBee Device

Configure self as router (optional)

Poll for incoming data

Transfer data

Leave network

1

2

3

4

AN241

4 Rev. 0.1

3.2.1. Initialization

Each device must be reset via the NLME-RESET primitive immediately on powerup.

3.2.2. Starting a ZigBee Coordinator

A network is established by designating a node as the ZigBee Coordinator. The Application layer must first instruct
the Coordinator to form a network then must permit other ZigBee devices to join the network. This is illustrated in
Figure 2.

For a more robust design, the Coordinator's nlmeNetworkFormationRequest()will usually include an active
scan to detect its neighboring environment. One possible SCAN outcome will be PAN ID conflict. This is a very
important exception that programmers should be aware of so any problem can be handled and detected before the
Coordinator starts.

"Permit Join" can be used creatively. Many examples have been discussed suggesting that "Permit Join" is toggled
on and off by a simple push button. This is one idea how the Coordinator can fend off unsolicited JOIN requests
and protect the integrity of the subject network.

Figure 2. Establishing a Network and Enabling Nodes to Join

ZigBee Coordinator
Application Layer Network Layer

nlmeResetRequest(...)

nlmeNetworkFormationRequest(...)

confirmation by return value of
nlmeResetRequest(...)

confirmation by return value of
nlmeNetworkFormationRequest(...)

nlmePermitJoiningRequest(...)

confirmation by return value of
nlmePermitJoiningRequest(...)

AN241

Rev. 0.1 5

3.2.3. Constructing the Network

Remote devices may join once a core network has been established. New devices (children) can connect to
existing devices (parents) through either association or direct connection.

3.2.3.1. Joining Through Association

In association, the child proactively discovers the network. Once discovered, the child requests a connection as
shown in Figure 3.

Figure 3. Child Joins Network Through Discovery and Association
(Optional Configuration as a Routing Node After Association)

Child
ZigBee Application Layer

Child
Network Layer

nlmeNetworkDiscoveryRequest(...)

Confirmation returns PAN ID’s of
available networks.

nlmeJoinRequest(...)

Application selects
PAN to join.

Device requests to join selected PAN.

Authetification
(if security enabled)

nlmeStartRouterRequest(...)

Optional enable as
routing node.

Parent
Network Layer

Parent
ZigBee Application Layer

nlmeResetRequest(...)

confirmation by return value of
nlmeResetRequest(...)

confirmation written to nlmeConfirm global

confirmation written to nlmeConfirm global

confirmation by return value of
nlmeStartRouterRequest(...)

indication written to nlmeConfirm global

AN241

6 Rev. 0.1

3.2.3.2. Direct Joining

Direct joining is used to reestablish a previous connection. The parent device first adds the child device back into
its network. The child must then attempt reconnection. This is most commonly used when a child device is
temporarily disconnected ("orphaned") from the network. This is illustrated in Figure 4.

Figure 4. Rejoining a Network

Parent
ZigBee Application Layer

Parent
Network Layer

nlmeDirectJoinRequest(...)

Confirmation returns PAN ID’s of
available networks.

Child
Network Layer

Child
ZigBee Application Layer

Check to ensure
extended address
present or new NWK
address can be
assigned.

nlmeJoinRequest(rejoinNetwork=TRUE)

confirmation written to nlmeConfirm global

confirmation written to nlmeConfirm global

AN241

Rev. 0.1 7

3.2.4. Data Transfer

ZigBee networks can be categorized into two basic operating types, beacon-enabled networks and non-beacon
networks. The network type is determined when the PAN Coordinator forms the network. The data transfer
operation is different for the two types.

3.2.4.1. Uploading Data

In non-beacon networks, the Coordinator's receiver is always enabled. Thus, devices can send data to the
Coordinator at any time*.

In beacon-enabled networks, devices need to synchronize with a beacon first, locate the appropriate timeslot, then
send data in the designated periods of a superframe.

3.2.4.2. Downloading Data

When the Coordinator wants to send data to its Child devices, it needs to follow different procedures depending
upon the receiver state of the destination device. Normally, if the receiver of the destination device is always
enabled while idle, data will be sent out during the active periods of a superframe. Indirect transmission may also
be used.

If the end device disables its receiver when idle, the Coordinator needs to use indirect data transmission. The
firmware will put the data in an indirect queue for devices to poll.

3.2.4.3. Synchronizing and Polling for Data

It is the Application layer's responsibility to call nlmeSyncRequest() periodically to sync with its parent for
pending data. The calling period is dependent upon specific applications.

In non-beacon networks, the sync request will trigger the lower layer to send a command requesting pending data
from the Coordinator. In beacon-enabled networks, this request will enable a search for the next beacon and
automatically request pending data if pending data are indicated in the beacon.

*Note: It is possible that in non-beacon networks the whole system goes to sleep for a period in which devices cannot send
data to Coordinators. Nevertheless, devices should normally be in a sleep state in that time too.

AN241

8 Rev. 0.1

3.2.5. Dissolving the Network

Devices may be disconnected from the network one-by-one. A child may proactively disconnect from its parent, or
the parent may break the network connection to a child, shown in Figure 5 and Figure 6, respectively.

3.2.5.1. Disconnection Initiated by Child

Figure 5. Child Initiates Disconnection from Network

3.2.5.2. Disconnection Initiated by Parent

Figure 6. Parent Initiates Disconnection of Child

Child
ZigBee Application Layer

Child
Network Layer

nlmeLeaveRequest(deviceAddress=NULL)

Parent
Network Layer

Parent
ZigBee Application Layer

nlmeResetRequest(...)

confirmation written to nlmeConfirm global

confirmation by return value of
nlmeResetRequest(...)

indication written to nlmeConfirm global

Parent
ZigBee Application Layer

Parent
Network Layer

nlmeLeaveRequest(deviceAddress=
<child EUI>)

Child
Network Layer

Child
ZigBee Application Layer

confirmation written to nlmeConfirm global indication written to nlmeConfirm global

nlmeResetRequest(...)

confirmation by return value of
nlmeResetRequest(...)

AN241

Rev. 0.1 9

4. Network Layer Data Entity (NLDE-) Commands

4.1. NLDE-DATA
4.1.1. Description

Applicability: All devices.

Prerequisites: Device must be associated.

4.1.2. Request
Description: This primitive requests the transfer of a data PDU (NSDU) from the local APS sub-layer

entity to a single or multiple peer APS sub-layer entity.

Function Prototype void nldeDataRequest(NLDE_DATA_REQUEST
*pNldeDataRequest);

Parameters: typedef struct{
WORD dstAddr;
BYTE nsduHandle;
BYTE broadcastRadius;
BOOL discoverRoute;
BOOL securityEnable;
BYTE nsduLength;
BYTE *pNsdu;

}NLDE_DATA_REQUEST; (defined in HS_NET.h)

NLDE_DATA_REQUEST *pNldeDataRequest
A pointer to the data structure of NLDE_DATA_REQUEST where all the arguments are
available for the function.

WORD dstAddr
The network address of the entity or entities to which the NSDU is being transferred.

BYTE nsduHandle
The handle associated with the NSDU to be transmitted by the NWK layer entity.

BYTE broadcastRadius
The distance, in hops, that a broadcast frame will be allowed to travel through the network.

BOOL discoverRoute
The DiscoverRoute parameter may be used to enable route discovery operations for
the transit of this frame.

BOOL securityEnable
The SecurityEnable parameter may be used to enable NWK layer security processing
for the current frame.

BYTE nsduLength
The number of octets comprising the NSDU to be transferred.

BYTE * pNsdu
A pointer to the packet payload.

Name Request Indication Response Confirm

NLDE-DATA 4.1.2 4.1.3 4.1.4

AN241

10 Rev. 0.1

4.1.3. Indication

Description: Indication written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_DATA_IND;
nlmeConfirm.buffer structure:

typedef struct
{

WORD srcAddress;
BYTE linkQuality;
BYTE nsduLength;
BYTE *pNsdu;

}NLDE_DATA_INDICATION; (defined in HS_NET.h)

WORD srcAddress
The individual device address from which the NSDU originated.

BYTE linkQuality
The link quality indication delivered by the MAC on receipt of this frame as a parameter of
the MCPS-DATA.indication primitive.

BYTE nsduLength
The number of octets comprising the NSDU being indicated.

BYTE* pNsdu
The pointer to the set of octets comprising the NSDU being indicated.

4.1.4. Confirm

Description: Confirmation written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_DATA_CFM;
nlmeConfirm.buffer structure:

typedef struct
{

NWK_ENUM status;
BYTE nsduHandle;

}NLDE_DATA_CONFIRM; (defined in HS_NET.h)

NWK_ENUM status
INVALID_REQUEST or any status values returned from security suite or the
MCPSDATA.confirm primitive (SUCCESS | TRANSACTION_OVERFLOW |
TRANSACTION_EXPIRED | CHANNEL_ACCESS_FAILURE | INVALID_GTS |
NO_ACK | UNAVAILABLE_KEY | FRAME_TOO_LONG | FAILED_SECURITY_CHECK)

BYTE nsduHandle
A handle to this packet from the mcpsDataRequest() function.

AN241

Rev. 0.1 11

5. Network Layer Management Entity (NLME-) Commands

Name Request Indication Response Confirm

NLME-NETWORK-DISCOVERY 5.1.2 5.1.3

NLME-NETWORK-FORMATION 5.2.2 5.2.3

NLME-PERMIT-JOINING 5.3.2 5.3.3

NLME-START-ROUTER 5.4.2 5.4.3

NLME-JOIN 5.5.2 5.5.3 5.5.4

NLME-DIRECT-JOIN 5.6.2 5.6.3

NLME-LEAVE 5.7.2 5.7.3 5.7.4

NLME-RESET 5.8.2 5.8.3

NLME-SYNC 5.9.2 5.9.3 5.9.4

NLME-GET 5.10.2 5.10.3

NLME-SET 5.11.2 5.11.3

AN241

12 Rev. 0.1

5.1. NLME-NETWORK-DISCOVERY
5.1.1. Description

This primitive instructs the device's network layer to search for networks within connection range. The search
operation will populate a list of available networks along with the characteristics of each.

Applicability: All device types.

Prerequisite: NLME-RESET

5.1.2. Request

Description: This function is called to request that the NWK layer discover networks currently operating
within range.

Function Prototype: void nlmeNetworkDiscoveryRequest(UINT32 scanChannels,
UINT8 scanDuration)

Parameters: UINT32 scanChannels
32 bit long value. The five most significant bits (b27, ... ,b31) are reserved. The 27 least
significant bits (b0, b1, ... b26) indicate which channels are to be scanned (1 = scan, 0 =
do not scan) for each of the 27 valid channels.

UINT8 scanDuration
8 bit long unsigned character. Valid between 0 and 0x0E. A value used to calculate the
length of time to spend scanning each channel. The time spent scanning each channel is
(aBaseSuperframeDuration * (2n + 1)) symbols, where n is the value of the ScanDuration
parameter. Constant aBaseSuperframeDuration is defined in the IEEE 802.15.4 Standard.

5.1.3. Confirm

Description: Confirmation written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_DISC_CFM;
nlmeConfirm.buffer structure:

typedef struct{
BYTE NetworkCount;
NETWORK_DESCRIPTOR nwkDescriptor[

MAX_USE_CHANNEL_COUNT];
MAC_ENUM Status;

}NLME_NETWORK_DISCOVERY_CONFIRM; (defined in HS_NET.h)

typedef struct {
WORD panID;
BYTE logicalChannel;
BYTE stackProfile;
BYTE zigBeeVersion;
BYTE beaconOrder;
BYTE superFrameOrder;
BOOL permitJoining;
BYTE securityLevel;

}NETWORK_DESCRIPTOR; (defined in HS_NET.h)

BYTE NetworkCount
Number of networks discovered during the search.

AN241

Rev. 0.1 13

nwkDescriptor
List of descriptors for each of the NetworkCount networks. One entry of type
NETWORK_DESCRIPTOR for each network found.

MAC_ENUM Status
Status after the search.

SUCCESS: successful search (minimum 1 network found)
NO_BEACON: no beacons detected during active scan
INVALID_PARAMETER: unsupported parameter or parameter out of range.

List entry, one per discovered network:

WORD panID
The 16-bit PAN identifier of the discovered network. The 2 highest-order bits of this
parameter are reserved and shall be set to 0.

BYTE logicalChannel
The current logical channel occupied by the network

BYTE stackProfile
A ZigBee stack profile identifier indicating the stack profile in use in the discovered
network.

BYTE zigBeeVersion
The version of the ZigBee protocol in use in the discovered network.

BYTE beaconOrder
This specifies how often the MAC sub-layer beacon is to be transmitted by a given device
on the network.

BYTE superFrameOrder
For beacon-enabled networks, i.e. beacon order < 15, this specifies the length of the
active period of the superframe.

BOOL permitJoining
Value of TRUE indicates that at least one ZigBee router on the network currently permits
joining, i.e. its NWK has been issued an NLME-PERMIT-JOINING primitive and the time
limit, if given, has not yet expired.

BYTE securityLevel
The security level used in a security-enabled PAN. This parameter is not specified in the
ZigBee v1.0 specification.

AN241

14 Rev. 0.1

5.2. NLME-NETWORK-FORMATION
5.2.1. Description

This primitive instructs a device to initialize itself as the coordinator of a new ZigBee network.

Applicability: Applies to Coordinator only.

Prerequisite: Device is Coordinator-capable (FFD) and not already established in a network.
NLME-RESET should be issued beforehand.

5.2.2. Request

Description: This primitive allows the next higher layer to request that the device start a new ZigBee
network with itself as the coordinator.

Function Prototype: NWK_ENUM nlmeNetworkFormationRequest(UINT32 scanChannels, BYTE
scanDuration, BYTE beaconOrder, BYTE superframeOrder, WORD panID,
BOOL batteryLifeExtension) large

Parameters: UINT32 scanChannels
The five most significant bits (b27, ... ,b31) are reserved.
The 27 least significant bits (b0, b1, ... b26) indicate which channels are to be scanned
(1 = scan, 0 = do not scan) for each of the 27 valid channels.

UINT8 scanDuration
A value used to calculate the length of time to spend scanning each channel.

BYTE beaconOrder
In star mode or tree mode this specifies the beacon order of the network that the higher
layers wish to form. In MESH_MODE there are no beacons and this parameter should be
set equal to 0x0F.

BYTE superframeOrder
In star mode or tree mode this specifies the superframe order of the network that the
higher layers wish to form.
In MESH_MODE there are no beacons and this parameter may be omitted. If the
parameter is supplied, it will be ignored.

WORD panID
An optional PAN identifier that may be supplied if higher layers wish to establish this
network with a predetermined identifier. (0x0000 - 0x3FFF)
If PANId is not specified (i.e. panID = NULL) the NWK layer will choose a PAN ID.

BOOL batteryLifeExtension
If this value is TRUE, the NLME will request that the ZigBee coordinator is started
supporting battery life extension mode.
If this value is FALSE, the NLME will request that the ZigBee coordinator is started without
supporting battery life extension mode.

AN241

Rev. 0.1 15

5.2.3. Confirm

Description: Confirmation by return value of nlmeNetworkFormationRequest, type NWK_ENUM (See
Section “6.1.1. NWK_ENUM” on page 28).

Returned Values: SUCCESS:

INVALID_REQUEST: Selected device is unable to start as a coordinator.

STARTUP_FAILURE: Device is unable to start as coordinator without conflicting with
another existing Pan ID or channel assignment.

NO_SHORT_ADDRESS:

UNAVAILABLE_KEY: Key not found (secure mode)

FRAME_TOO_LONG:

FAILED_SECURITY_CHECK:

INVALID_PARAMETER: Unsupported parameter or parameter out of range.

AN241

16 Rev. 0.1

5.3. NLME-PERMIT-JOINING
5.3.1. Description

This primitive opens a Coordinator or Router to accept other devices to its network.

Applicability: Applies to Coordinator or Routers only.

Prerequisite: Device already started as Coordinator or Router.
NLME-NETWORK-FORMATION (Coordinator), or
NLME-START-ROUTER (Router)

5.3.2. Request

Description: This function allows the next higher layer of a ZigBee coordinator or router to set its MAC
sub-layer association permit flag for a fixed period during which it may accept devices
onto its network.

Function Prototype: NWK_ENUM nlmePermitJoiningRequest(BYTE permitDuration)

Parameters: BYTE permitDuration
The length of time in seconds during which the ZigBee coordinator or router will allow
associations.
The values 0x00 and 0xff indicate that permission is disabled or enabled, respectively,
without a specified time limit.

5.3.3. Confirm

Description: Confirmation by return value of nmlePermitJoiningRequest, type NWK_ENUM (See
Section “6.1.1. NWK_ENUM” on page 28).

Returned Values: SUCCESS:

INVALID_REQUEST: Occurs if issued to a ZigBee end device.

UNSUPPORTED_ATTRIBUTE:

INVALID_PARAMETER:

AN241

Rev. 0.1 17

5.4. NLME-START-ROUTER
5.4.1. Description
5.4.2. Request

Description: This function allows the next higher layer of a ZigBee router to initialize or change its
superframe configuration. It also allows the next higher layer of a ZigBee coordinator to
change its superframe configuration.

Function Prototype: NWK_ENUM nlmeStartRouterRequest(BYTE beaconOrder, BYTE
superframeOrder, BOOL BatteryLifeExtension)

Parameters: BYTE beaconOrder
In star mode or tree mode this specifies the beacon order of the network that the higher
layers wish to form. (0x00–0x0F)
In MESH_MODE there are no beacons and this parameter will be set equal to 0x0F.

BYTE superframeOrder
In star mode or tree mode this specifies the superframe order of the network that the
higher layers wish to form. (0x00–0x0F)
In MESH_MODE there are no beacons and this parameter may be omitted. If the
parameter is supplied, it will be ignored.

BOOL BatteryLifeExtension
If this value is TRUE, the NLME will request that the ZigBee coordinator is started
supporting battery life extension mode.
If this value is FALSE, the NLME will request that the ZigBee coordinator is started without
supporting battery life extension mode.

5.4.3. Confirm

Description: Confirmation by return value of nlmeStartRouterRequest, type NWK_ENUM (See
Section “6.1.1. NWK_ENUM” on page 28).

Returned Values: INVALID_REQUEST or any status value (SUCCESS, NO_SHORT_ADDRESS,
UNAVAILABLE_KEY,FRAME_TOO_LONG, FAILED_SECURITY_CHECK or
INVALID_PARAMETER) returned from the mlmeStartRequest function.

AN241

18 Rev. 0.1

5.5. NLME-JOIN
5.5.1. Description

Applicability: Allows Child to join network.

Prerequisites: NLME-RESET must occur before NLME-JOIN

5.5.2. Request

Description: This primitive allows the next higher layer to request to join a network either through
association or directly or to re-join a network if orphaned.

Function Prototype: void nlmeJoinRequest(WORD panId, BOOL joinAsRouter, BOOL
rejoinNetwork, UINT32 scanChannels, BYTE scanDuration, BYTE
powerSource, BYTE rxOnWhenIdle, BYTE macSecurity) large

Parameters: WORD panId
The PAN identifier of the network to attempt to join or re-join. (0x0000–0x3FFF). Select
from available networks shown in nwkDescriptor list from NLME-NETWORK-
DISCOVERY request/confirmation.

BOOL joinAsRouter
The parameter is TRUE if the device is attempting to join the network in the capacity of a
ZigBee router. It is FALSE otherwise.
The parameter is valid in requests to join through association and ignored in requests to
join directly or to re-join through orphaning.

BOOL rejoinNetwork
TRUE: the device is joining directly or rejoining the network using the orphaning
procedure.
FALSE: the device is requesting to join a network through association.

UINT32 scanChannels
The five most significant bits (b27, ... ,b31) are reserved. The 27 least significant bits (b0,
b1, ... b26) indicate which channels are to be scanned (1 = scan, 0 = do not scan) for each
of the 27 valid channels.

BYTE scanDuration
A value used to calculate the length of time to spend scanning each channel.

BYTE powerSource
This parameter becomes a part of the CapabilityInformation parameter passed to
the mlmeAssociateRequest function that is generated as the result of a successful
executing of a NWK join.

0x01: Mains-powered device,
0x00: other power source.

BYTE rxOnWhenIdle
This parameter indicates whether the device can be expected to receive packets over the
air during idle portions of the active portion of its superframe.

0x01: The receiver is enabled when the device is idle.
0x00: The receiver may be disabled when the device is idle.

This parameter shall have a value of 0x01 for ZigBee coordinators and ZigBee routers
operating in a nonbeacon-oriented network.

AN241

Rev. 0.1 19

BYTE macSecurity
This parameter becomes a part of the capabilityInformation parameter passed to
the mlmeAssociateRequest function that is generated as the result of a successful
executing of a NWK join.

0x01: MAC security enabled.
0x00: MAC security disabled.

5.5.3. Indication

Description: This function allows the next higher layer of a ZigBee coordinator or ZigBee router to be
notified when a new device has successfully joined its network by association. Indication
written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_JOIN_IND;
nlmeConfirm.buffer structure:

typedef struct {
 WORD shortAddress;
 ADDRESS extendedAddress;
 BYTE capabilityInformation;
}NLME_JOIN_INDICATION; (defined in HS_NET.h)

Parameters: WORD shortAddress;
The network address of an entity that has been added to the network.

ADDRESS extendedAddress;
The EUI of the an entity that has been added to the network.

BYTE capabilityInformation
Bitwise description of the device.

b0: Alternate PAN coordinator:Always 0 in ZigBee v1.0
b1: Device Type:

 1: Joining device is a router, and joining
 with joinAsRouter=TRUE.
0: End device or router joining as an end device.

b2: Power Source: Set to the lowest order bit of the powerSource parameter
passed to the nlmeJoinRequest primitive.

1: mains powered
0: other

b3: Receiver on when idle. Set to the lowest order bit of the rxOnWhenIdle
parameter passed to the nlmeJoinRequest primitive.

1: receiver enabled when device in idle.
0: receiver may be disabled when device is idle.

b4: Reserved. Always 0.
b5: Reserved. Always 0
b6: Security Capability. This field shall be set to the value of lowest-order bit of the
macSecurity parameter passed to the NLME-JOIN-request primitive.

1: MAC security enabled
0: MAC security disabled

b7: Allocate address: Always 1 in ZigBee v1.0. Always allocate the joining device
a 16-bit short address.

AN241

20 Rev. 0.1

5.5.4. Confirm

Description: Confirmation written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_JOIN_CFM;
nlmeConfirm.buffer structure:

typedef struct{
WORD PANId;
NWK_ENUM Status;

}NLME_JOIN_CONFIRM; (defined in HS_NET.h)

Parameters: WORD PANId;
The PAN identifier from the NLME-JOIN.request to which this is a confirmation. The 2
highest-order bits of this parameter are reserved and should be set to 0.

NWK_ENUM Status
INVALID_REQUEST, NOT_PERMITTED or any status value returned from the MLME-
ASSOCIATE.confirm primitive or the MLME-SCAN.confirm primitive (SUCCESS,
CHANNEL_ACCESS_FAILURE, NO_ACK,_NO_DATA, UNAVAILABLE_KEY,
FAILED_SECURITY_CHECK).

AN241

Rev. 0.1 21

5.6. NLME-DIRECT-JOIN
5.6.1. Description

This primitive manually adds a child device to its neighbor table. It does not communicate or handshake with the
added child device.

Applicability: Ability to request applies only to Coordinator or Router-type devices.
All end devices are able to accept a direct join request from a parent.

Prerequisites: Device must be a Coordinator or Router to initiate.
Requesting device must know 64-bit address of device to add.
Child device must proactively initiate an nlmeJoinRequest(rejoinNetwork=TRUE)
to complete re-join.

5.6.2. Request

Function Prototype: void nlmeDirectJoinRequest(ADDRESS deviceAddress,
CAPABILITY_INFORMATION_FIELD capabilityInformation)

Parameters: ADDRESS deviceAddress
The IEEE address of the device to be directly joined.

BYTE capabilityInformation
The operating capabilities of the device being directly joined. Refer to sections 5.5.3 and
6.2.1.

5.6.3. Confirm

Description: Confirmation written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_DJOIN_CFM;
nlmeConfirm.buffer structure:
typedef struct{

ADDRESS deviceAddress;
NWK_ENUM status;

}NLME_DIRECT_JOIN_CONFIRM; (defined in HS_NET.h)

Parameters: ADDRESS deviceAddress;
IEEE address of the device joined.

NWK_ENUM status;

SUCCESS:

ALREADY_PRESENT: Device already exists in table.

TABLE_FULL: No capacity available for additional devices.

AN241

22 Rev. 0.1

5.7. NLME-LEAVE
5.7.1. Description

This set of primitives defines how the next higher layer of a device can request to leave or request that another
device leaves a network. This set of primitives also defines how the next higher layer of a ZigBee coordinator
device can be notified of a successful attempt by a device to leave its network.

Applicability: Both child and parent-type devices.

Prerequisites: Device to be disconnected is currently connected to network.

5.7.2. Request

Description: The Function is used to request that it or another device leaves the network.

Function Prototype: void nlmeLeaveRequest(ADDRESS deviceAddress)

Parameters: ADDRESS deviceAddress
Parent: 64-bit IEEE address of child device to remove from network.
Child: NULL to remove itself from network.

5.7.3. Indication

Description: If the device is a child, a leave indication with a null address argument that the device has
been forced to disconnect by its parent.
If the devices is a parent, a leave indication shows that a child has proactively removed
itself from the network.

Results: Indication written to nlmeConfirm global.
nlmeConfirm.confirmId = N_LEAVE_IND;
nlmeConfirm.buffer structure:

typedef struct {
ADDRESS extendedAddress;

}NLME_LEAVE_INDICATION;

Parameters: ADDRESS extendedAddress

NULL if this device was removed by a parent device.

<IEEE address> if a child device has proactively disassociated itself from this parental

device.

AN241

Rev. 0.1 23

5.7.4. Confirm

Description: Confirmation written to nlmeConfirm global.
Results: nlmeConfirm.confirmId = N_LEAVE_CFM;

nlmeConfirm.buffer structure:
typedef struct{

ADDRESS deviceAddress;
NWK_ENUM status;

}NLME_LEAVE_CONFIRM; (defined in HS_NET.h)

Parameters: ADDRESS deviceAddress

NULL if device removed itself from a parent.

<IEEE address> if device is a parent and has removed a child.

NWK_ENUM status
SUCCESS:

INVALID_REQUEST: Device is not in a network.

UNKNOWN_DEVICE: Issued if leave request made to a coordinator or router to
remove an unknown device.

AN241

24 Rev. 0.1

5.8. NLME-RESET
5.8.1. Description

The function is called to request that the NWK layer performs a reset operation. This operation sets NIB values to
defaults, resets the MAC layer, and clears network-level parameters such as discovered routes.

NLME-RESET must be called immediately on power-up.

5.8.2. Request

Function Prototype: NWK_ENUM nlmeResetRequest(void)

Parameters: None.

5.8.3. Confirm

Description: Confirmation by return value of mlmeResetRequest, type NWK_ENUM (See Section
“6.1.1. NWK_ENUM” on page 28).

Returned Values: Status value returned from the mlmeResetRequest function.
SUCCESS:

DISABLE_TRX_FAILURE:

AN241

Rev. 0.1 25

5.9. NLME-SYNC
5.9.1. Description

The NLME-SYNC primitive is used by devices in a network to synchronize to a parent node and to request data
from the Coordinator or Router.

In a non-beacon network, this primitive is simply used by a device to request pending data from the PAN
coordinator. The track parameter should always be set to FALSE in non-beacon mode.

In a beacon-based network, this primitive serves multiple functions. First, it directs the device's MAC layer to
synchronize to the beacon from its parent. The node will continuously track beacons if the track parameter is set
to TRUE. Second, it instructs the device to automatically send a data request to the PAN coordinator each time a
beacon frame is received indicating that data are waiting for the device.

Applicability: Applies to both beacon-based and non-beacon-based networks.
Applies to all devices other than Coordinators.

Prerequisites: Device associated with a network.

5.9.2. Request

Description: The function is called to synchronize or extract data from its ZigBee coordinator or router.

Function Prototype: NWK_ENUM nlmeSyncRequest(BOOL track)

Parameters: BOOL track
Whether the synchronization should be maintained for future beacons or not.

5.9.3. Indication

Description: This function allows the next higher layer to be notified of the loss of synchronization at the
MAC sub-layer.

Indication written to nlmeConfirm global. According to the NWK specification, this
primitive will be generated only when nlmeSyncRequest is called. This primitive will be
generated when beacon can not be detected after several beacon periods.

Results: nlmeConfirm.confirmId = N_SYNC_IND

5.9.4. Confirm

Description: Confirmation by return value of mlmeSyncRequest, type NWK_ENUM (See Section “6.1.1.
NWK_ENUM” on page 28).

Returned Values: SUCCESS:

SYNC_FAILURE: If unable to synchronize to a parent's beacon.

INVALID_PARAMETER: Occurs when track = TRUE on a nonbeacon network.

AN241

26 Rev. 0.1

5.10. NLME-GET
5.10.1. Description

This function allows the application layer to read the value of an attribute from the NIB. Attributes are listed in
Section "6.1.2. NWK_NIB_ATTR" on page 28.

5.10.2. Request

Function Prototype: void nlmeGetRequest(NWK_NIB_ATTR NIBAttribute)

Parameters: NWK_NIB_ATTR NIBAttribute
The identifier of the NIB attribute to read.

5.10.3. Confirm

Description: Confirmation written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_GET_CFM;
nlmeConfirm.buffer structure:
typedef struct{

NWK_ENUM status;
NWK_NIB_ATTR NIBAttribute;
WORD NIBAttributeLength;
BYTE *pNIBAttributeValue;

}NLME_GET_CONFIRM; (defined in HS_NET.h)

Parameters: NWK_ENUM status
SUCCESS:
UNSUPPORTED_ATTRIBUTE:

NWK_NIB_ATTR NIBAttribute
See attributes, Section 6.1.2.

WORD NIBAttributeLength
Length in octets (0x0000 - 0xFFFF)

BYTE *pNIBAttributeValue

AN241

Rev. 0.1 27

5.11. NLME-SET
5.11.1. Description

This function allows the application layer to write the value of an attribute from the NIB. Attributes are listed in
Section "6.1.2. NWK_NIB_ATTR" on page 28.

5.11.2. Request

Description: This function allows the next higher layer to write the value of an attribute into the NIB.

Function Prototype: void nlmeSetRequest(NWK_NIB_ATTR NIBAttribute, BYTE
NIBAttributeLength, void *pNIBAttributeValue)

Parameters: NWK_ENUM NIBAttribute
The identifier of the NIB attribute to be written.

WORD NIBAttributeLength
The length, in octets, of the attribute value being set.

void *pNIBAttributeValue
Pointer to the value of the NIB attribute that should be written.

5.11.3. Confirm

Description: Confirmation written to nlmeConfirm global.

Results: nlmeConfirm.confirmId = N_SET_CFM;
nlmeConfirm.buffer structure:
typedef struct{

NWK_ENUM status;
NWK_NIB_ATTR NIBAttribute;

}NLME_SET_CONFIRM; (defined in HS_NET.h)

AN241

28 Rev. 0.1

6. Shared Type Definitions, Structures and Defines

6.1. HS_Net.h
6.1.1. NWK_ENUM
BYTE NWK_ENUM;

#define SUCCESS 0x00
#define NWK_INVALID_PARAMETER 0xc1
#define INVALID_REQUEST 0xc2
#define NOT_PERMITTED 0xc3
#define STARTUP_FAILURE 0xc4
#define ALREADY_PRESENT 0xc5
#define SYNC_FAILURE 0xc6
#define TABLE_FULL 0xc7
#define UNKNOWN_DEVICE 0xc8
#define NWK_UNSUPPORTED_ATTRIBUTE 0xc9

6.1.2. NWK_NIB_ATTR
typedef enum {
 NWK_BSCN = 0x81,
 NWK_PASSIVE_ACK_TIMEOUT,
 NWK_MAX_BROADCAST_RETRIES,
 NWK_MAX_CHILDREN,
 NWK_MAX_DEPTH,
 NWK_MAX_ROUTERS,
 NWK_NEIGHBOR_TABLE,
 NWK_NETWORK_BROADCAST_DELIVERY_TIME,
 NWK_REPORT_CONSTANT_COST,
 NWK_ROUTE_DISCOVERY_RETRIES_PERMITTED,
 NWK_ROUTE_TABLE,
 NWK_SECURE_ALL_FRAMES,
 NWK_SECURITY_LEVEL,
 NWK_SYM_LINK,
 NWK_CAPABILITY_INFORMATION
} NWK_NIB_ATTR;

6.2. mac.h
6.2.1. CAPABILITY_INFORMATION_FIELD
typedef struct tag_CAPABILITY_INFORMATION_FIELD
{
 unsigned char AlternatePANcoordiantor :1;
 unsigned char DeviceType :1;
 unsigned char PowerSource :1;
 unsigned char ReceiverOnWhenIdle :1;
 unsigned char Reserved :2;
 unsigned char SecurityCapability :1;
 unsigned char AllocateAddress :1;
}CAPABILITY_INFORMATION_FIELD;

AN241

Rev. 0.1 29

6.2.2. MAC_ENUM
typedef BYTE MAC_ENUM;

#define SUCCESS 0
#define BEACON_LOSS 0xE0
#define CHANNEL_ACCESS_FAILURE 0xE1
#define DENIED 0xE2
#define DISABLE_TRX_FAILURE 0xE3
#define FAILED_SECURITY_CHECK 0xE4
#define FRAME_TOO_LONG 0xE5
#define INVALID_GTS 0xE6
#define INVALID_HANDLE 0xE7
#define INVALID_PARAMETER 0xE8
#define NO_ACK 0xE9
#define NO_BEACON 0xEA
#define NO_DATA 0xEB
#define NO_SHORT_ADDRESS 0xEC
#define OUT_OF_CAP 0xED
#define PAN_ID_CONFLICT 0xEE
#define REALIGNMENT 0xEF
#define TRANSACTION_EXPIRED 0xF0
#define TRANSACTION_OVERFLOW 0xF1
#define TX_ACTIVE 0xF2
#define UNAVAILABLE_KEY 0xF3
#define UNSUPPORTED_ATTRIBUTE 0xF4
#define RX_DEFERRED 0xF5

6.3. mac_headers.h
6.3.1. ADDRESS
typedef union {
 BYTE Extended[8];
 WORD Short[4];
 }ADDRESS;

AN241

30 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735

Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

