

NPN SILICON EPITAXIAL TWIN TRANSISTOR

UPA826TC

FEATURES

SMALL PACKAGE STYLE:

1.5 mm x 1.1 mm, 33% smaller than conventional SOT-363 package

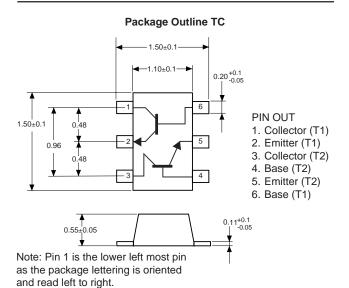
• LOW HEIGHT PROFILE:

Just 0.55 mm high

• FLAT LEAD STYLE:

Reduced lead inductance improves electrical performance

ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)


SYMBOLS	PARAMETERS	UNITS	IITS RATINGS	
Vсво	Collector to Base Voltage	V	9	
VCEO	Collector to Emitter Voltage	V	6	
VEBO	Emitter to Base Voltage	V	2	
Ic	Collector Current	mA	30	
Рт	Total Power Dissipation 1 Element 2 Elements	mW mW	TBD TBD	
TJ	Junction Temperature	°C	150	
Тѕтс	Storage Temperature	°C	-65 to +150	

Note: 1. Operation in excess of any one of these parameters may result in permanent damage.

DESCRIPTION

The UPA826TC contains two NE685 NPN high frequency silicon bipolar chips. NEC's new ultra small TC package is ideal for all portable wireless applications where reducing board space is a prime consideration. Each transistor chip is independently mounted and easily configured for oscillator buffer amplifier and other applications.

OUTLINE DIMENSIONS (Units in mm)

ELECTRICAL CHARACTERISTICS (TA = 25°C)

PART NUMBER PACKAGE OUTLINE		UPA826TC TC			
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
Ісво	Collector Cutoff Current at VcB = 5 V, IE = 0	μΑ			0.1
І ЕВО	Emitter Cutoff Current at VEB = 1 V, IC = 0	μΑ			0.1
hfE	DC Current Gain ¹ at VcE = 3 V, Ic = 10 mA		75	110	150
f⊤	Gain Bandwidth at VcE = 3 V, Ic = 10 mA, f = 2 GHz	GHz		12	
Cre	Feedback Capacitance ² at VcB = 3 V, IE = 0, f = 1 MHz	pF		0.4	0.7
S21E ²	Insertion Power Gain at VcE = 3 V, Ic =10 mA, f = 2 GHz	dB	7	8.5	
NF	Noise Figure at VcE = 3 V, Ic = 3 mA, f = 2 GHz	dB		1.5	2.5

Notes: 1. Pulsed measurement, pulse width \leq 350 μ s, duty cycle \leq 2 %.

- Collector to base capacitance when measured with capacitance meter (automatic balanced bridge method), with emitter connected to guard pin of capacitance meter.
- 3. For tape and reel version, use part number UPA826TC-T1, 3K per reel.

NONLINEAR MODEL

BJT NONLINEAR MODEL PARAMETERS(1)

Parameters	Q1 & Q2	Parameters	Q1 & Q2
IS	7e-16	MJC	0.34
BF	109	XCJC	0
NF	1	CJS	0
VAF	15	VJS	0.75
IKF	0.19	MJS	0
ISE	7.9e-13	FC	0.5
NE	2.19	TF	3e-12
BR	1	XTF	5.2
NR	1.08	VTF	4.58
VAR	12.4	ITF	0.01
IKR	Infinity	PTF	0
ISC	0	TR	1e-9
NC	2	EG	1.11
RE	1.3	XTB	0
RB	10	XTI	3
RBM	8.34	KF	0
IRB	0.009	AF	1
RC	10		
CJE	0.4e-12		
VJE	0.81		
MJE	0.5		
CJC	0.18e-12		
VJC	0.75		

(1) Gummel-Poon Model

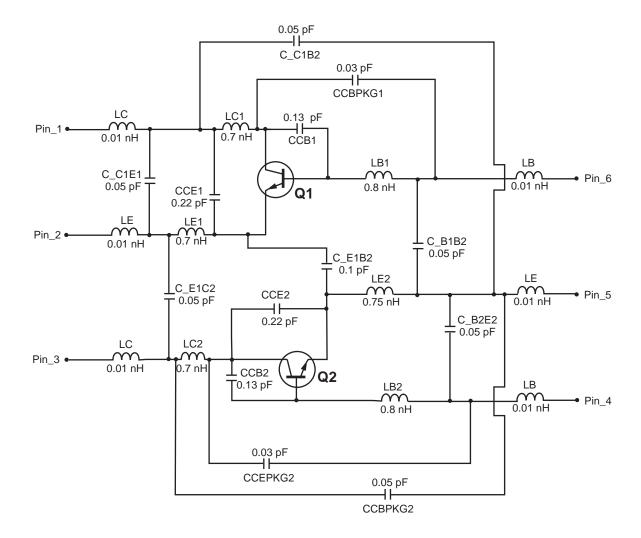
Note:

This nonlinear model utilized the latest data available.

See our Design Parameter Library at ${\bf www.cel.com}$ for this data.

UNITS

Parameter	Units	
time	seconds	
capacitance	farads	
inductance	henries	
resistance	ohms	
voltage	volts	
current	amps	


MODEL RANGE

Frequency: 0.1 to 7.0 GHz

Bias: VCE =0.5 V to 5 V, Ic = 0.5 mA to 20 mA

Date: 02/0

SCHEMATIC

MODEL RANGE

Frequency: 0.1 to 7.0 GHz

Bias: VCE = 0.5 V to 5 V, IC = 0.5 mA to 20 mA

Date: 02/01

Life Support Applications

These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.