Electronics

Features

- Operates DC - 4 GHz on Single Supply
- ASIC TTL / CMOS Driver
- Leadless $4 \times 7 \mathrm{~mm}$ Chip Scale Plastic Package
- Low DC Power Consumption
- 50 Ohm Nominal Impedance
- Test Boards are Available
- Tape and Reel are Available

Description

M/A-COM's SW90-0004A is a SP6T absorptive pHEMT switch with integral TTL driver. This device is in an MLP plastic surface mount package. This switch offers excellent broadband performance and repeatability from DC to 4 GHz , while maintaining low DC power dissipation. The SW90-0004A is ideally suited for wireless infrastructure applications.

Ordering Information

Part Number	Package
SW90-0004A	Bulk Packaging
SW90-0004ATR	1000 piece reel
SW90-0004A-TB	Units Mounted on Test Board

Note: Reference Application Note M513 for reel size information.

Absolute Maximum Ratings ${ }^{1,2}$

Parameter	Absolute Maximum
Max. Input Power	
0.05 GHz	+27 dBm
$0.5-4.0 \mathrm{GHz}$	+34 dBm
Bias Voltages	+5.5 V
$\mathrm{~V}_{\mathrm{CC}}$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Control Voltage ${ }^{3}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature $_{\text {Storage Temperature }}$	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

1. Operation of this device above any one of these parameters may cause permanent damage.
2. When the RF input is applied to the terminated port, the absolute maximum power is +30 dBm .
3. Standard CMOS TTL interface, latch-up will occur if logic signal is applied prior to power supply.

Functional Schematic

Pin Configuration ${ }^{4,5,6}$

Pin No.	Function	Pin No.	Function
1	CP2	19	GND
2	$\mathrm{V}_{\text {EE }}$	20	NC
3	NC	21	GND
4	C6	22	RFC
5	C5	23	GND
6	C4	24	GND
7	C3	25	RF4
8	C2	26	GND
9	C1	27	RF5
10	NC	28	GND
11	GND	29	RF6
12	NC	30	GND
13	GND	31	NC
14	RF1	32	V_{EE}
15	GND	33	Vcc
16	RF2	34	NC
17	GND	35	Vcc
18	RF3	36	CP1

4. NC=No Connection
5. For single supply operation VEE is internally generated and must remain isolated from external power supplies. Generated noise is typical of switching DC-DC Converters.
6. Connections and external components shown in functional schematic are required. $0.1 \mu \mathrm{~F}$ Capacitors need to be located near pins $32 \& 33$.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Visit www.macom.com for additional data sheets and product information.

Electrical Specifications: $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$

Parameter	Test Conditions	Frequency	Units	Min.	Typ.	Max.
Insertion Loss	RFC-RF1, 2, 3, 4, 5, 6	$\begin{aligned} & \mathrm{DC}-3.0 \mathrm{GHz} \\ & 3.0-4.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	-	-	$\begin{aligned} & 2.1 \\ & 2.4 \end{aligned}$
Isolation	-	DC - 4.0 GHz	dB	25	-	-
VSWR	On (RFC, RF1-RF6) Logic per Truth Table Off (RF1-RF6) Logic per Truth Table	$\begin{aligned} & \mathrm{DC}-4.0 \mathrm{GHz} \\ & \mathrm{DC}-4.0 \mathrm{GHz} \end{aligned}$	Ratio Ratio	$-$	$-$	$\begin{aligned} & 2.0: 1 \\ & 2.0: 1 \end{aligned}$
1 dB Compression	-	$\begin{gathered} 50 \mathrm{MHz} \\ 0.5-4.0 \mathrm{GHz} \end{gathered}$	dBm dBm	-	$\begin{aligned} & 15 \\ & 27 \end{aligned}$	-
Input IP_{3}	Two-tone inputs up to +5 dBm	$\begin{gathered} 50 \mathrm{MHz} \\ 0.5-4.0 \mathrm{GHz} \end{gathered}$	dBm dBm	-	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	-
Switching Speed	Ton (50\% Control to 10\% RF)		nS	-	20	-
	Toff (50\% Control to 90\% RF)		nS	-	15	-
	Trise (10% to 90% RF)		nS	-	5	-
	Tfall (90\% to 10\% RF)		nS	-	2	-
Vcc	-	-	V	4.5	5.0	5.5
Logic "0"	Sink Current is $20 \mu \mathrm{~A}$ max.	-	V	0.0	-	0.8
Logic "1"	Source Current is $20 \mu \mathrm{~A}$ max.	-	V	2.0	-	5.0
Icc ${ }^{7}$	Vcc min to max, Logic "0" or "1"	-	mA	-	5	8
Turn-on Current ${ }^{8}$	For guaranteed start-up	-	mA	-	-	125
Switching Noise	Generated from DC-DC Converter with recommended capacitors	3.5 MHz	dBm	-	-93	-
Thermal Resistance $\theta \mathrm{jc}$	-	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-	15	-

7. During turn-on, the device requires an initial start up current (Icc) specified as "Turn-on Current". Once operational, Icc will drop to the specified levels. This is not applicable to dual supply operation.
8. The DC-DC converter is guaranteed to start in $100 \mu \mathrm{~s}$ as long as the power supplies have the maximum turn-on current available for start-up.

Truth Table

Control Inputs " 0 " is TTL Low, " 1 " is TTL High						Condition of Switch RF Common to Each RF Port					
C1	C2	C3	C4	C5	C6	RF1	RF2	RF3	RF4	RF5	RF6
1	0	0	0	0	0	On	Off	Off	Off	Off	Off
0	1	0	0	0	0	Off	On	Off	Off	Off	Off
0	0	1	0	0	0	Off	Off	On	Off	Off	Off
0	0	0	1	0	0	Off	Off	Off	On	Off	Off
0	0	0	0	1	0	Off	Off	Off	Off	On	Off
0	0	0	0	0	1	Off	Off	Off	Off	Off	On

GaAs SP6T Switch, Absorptive, Single Supply

Typical Performance Curves

Insertion Loss vs. Frequency

On VSWR vs. Frequency

IP3 Results ${ }^{10}$

10.All testing done with the second tone 5 MHz above the frequency on the plot, except for the 10 MHz point, where the second tone is at 11 MHz . Both tones are +5 dBm .

Isolation (dB) vs. Frequency

VSWR (Terminations) vs. Frequency

GaAs SP6T Switch, Absorptive, Single Supply

Recommended PCB Layout ${ }^{9}$

9. Application Note C2083 is available on line at www.macom.com

CSP-2

