

Network Solutions Oki for a Global Society

FEDL7732-01-10 Issue Date: Nov. 2, 2005

OKI Semiconductor MSM7732-01

Audio CODEC

GENERAL DESCRIPTION

The MSM7732 is a single-channel full duplex CODEC CMOS IC which performs mutual transcoding between the analog voice band signals and 64 kbps PCM serial data.

This device performs such functions as DTMF tone and several types of tone generation, transmit/receive data mute and gain control, and side tone path.

FEATURES

- · Single 3 V power supply operation
- V_{DD}: 2.4 V to 3.3 V
- \cdot PCM interface data format : $\mu\text{-law}/A\text{-law}/linear$ (2's complement) selectable
- \cdot PCM interface timing : long frame synchronous timing/short frame synchronous timing
- \cdot Full-duplex single channel operation
- · Serial PCM transmission data rate: 64 kbps to 2048 kbps
- · Low power consumption

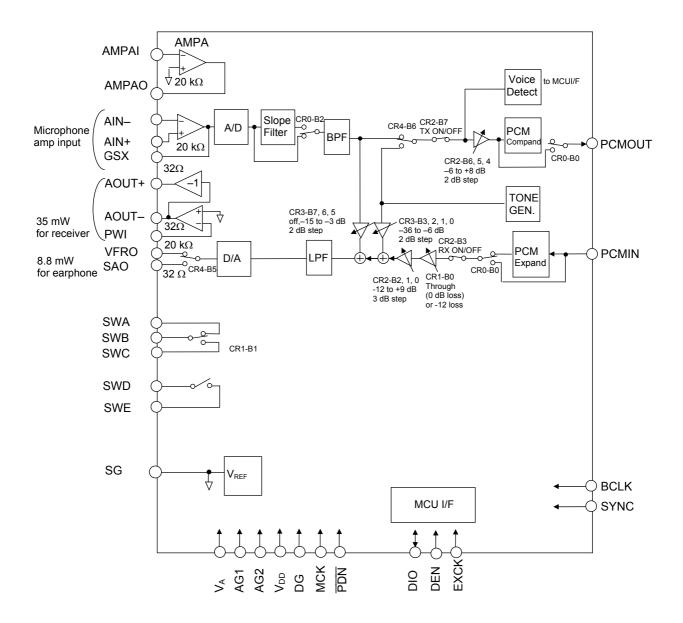
Operating mode: 15 mW typ. ($V_{DD} = 3.0 \text{ V}$)

Power-down mode: $3 \mu W$ typ. (V_{DD} = 3.0 V)

- \cdot Master clock frequency: 2.048 MHz
- · Analog output stage

35 mW drive for receiver speaker (differential drive of 32 Ω)--Gain adjustable 66 mW drive for receiver speaker (differential drive of 30 Ω)--Gain adjustable 6.6 mW drive for earphone speaker (single drive of 32 Ω) --Gain adjustable

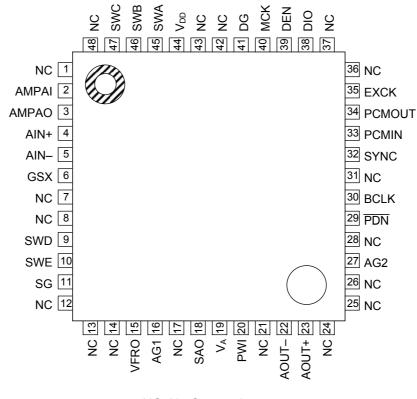
- Transmit/receive mute, transmit/receive programmable gain control
- · Side tone path with programmable attenuation (8-step adjustment level)
- \cdot Built-in DTMF tone generator
- \cdot Built-in various ringing/function tone generator
- · Built-in various ring back tone generator
- · Serial MCU interface control: 3 bit
- · Built-in transmit voice signal detector
- · Built-in op amps and analog switches for various analog interface
- · Package options :


30-pin plastic SSOP (SSOP30-P-56-0.65-K) (MSM7732-01 MB)

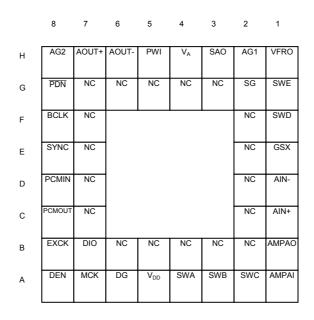
48-pin plastic TQFP (TQFP48-P-0707-0.50-K) (MSM7732-01 TB)

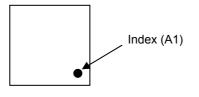
48-pin plastic LGA (P-TFLGA48-0707-0.8) (MSM7732-01 LB)

48-pin plastic BGA (P-LFBGA48-0707-0.8) (MSM7732-01 LA)


BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)




30-Pin Plastic SSOP

NC: No Connection

48-Pin Plastic TQFP

NC: No Connection

48-Pin Plastic LGA 48-Pin Plastic BGA

PIN DESCRIPTION

Pin	Symbol	Туре	Description
1	V _{DD}	_	Power supply (3.0 V)
2	SWA	IO	Analog switch A
3	SWB	IO	Analog switch B
4	SWC	IO	Analog switch C
5	AMPAI	Ι	Amplifier A inverting input
6	AMPAO	0	Amplifier A output
7	AIN+	Ι	Transmit side amplifier non-inverting input
8	AIN–	Ι	Transmit side amplifier inverting input
9	GSX	0	Transmit side amplifier output
10	SWD	Ю	Analog switch D
11	SWE	Ю	Analog switch E
12	SG	0	Analog signal ground (1.4 V)
13	VFRO	0	Receive side voice output
14	AG1	_	Analog ground 1 (0 V)
15	SAO	0	Receive side sounder amplifier output
16	VA	_	Analog power supply (3.0 V)
17	PWI	Ι	Receive side voice amplifier input
18	AOUT-	0	Receive side voice amplifier output –
19	AOUT+	0	Receive side voice amplifier output +
20	AG2	_	Analog ground 2 (0 V)
21	PDN	I	Power down control input
22	BCLK	I	PCM data shift clock input
23	SYNC	I	PCM data shift sync signal input
24	PCMIN	I	Receive side PCM signal input
25	PCMOUT	0	Transmit side PCM signal output
26	EXCK	I	Clock signal input for control register
27	DIO	Ю	Address and data input or output for control register
28	DEN	I	Enable signal input for control register
29	MCK	Ι	Master clock input (2.048 MHz)
30	DG	—	Digital ground (0 V)

PIN FUNCTIONAL DESCRIPTION

AIN+, AIN-, GSX

Transmit analog inputs and the output for transmit gain adjustment.

AIN- connects to inverting input of the internal transmit amplifier. AIN+ connects to non-inverting input of the internal transmit amplifier. GSX connects to the internal transmit amplifier output. Refer to Figure 1 for gain adjustment.

VFRO, SAO, AOUT+, AOUT-, PWI

Receive analog outputs and the outputs for receive gain adjustment.

VFRO is the receive filter output for the voice signal. SAO is the receive filter output for an acoustic component of the sound tone. SAO can directly drive 32 Ω load. AOUT+ and AOUT- are differential analog signal outputs which can directly drive a 32 Ω load. Refer to Figure 1.

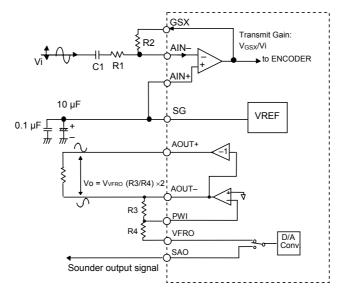


Figure 1 Analog Input/Output Interface

SG

Analog signal ground.

The output voltage of this pin is approximately 1.4 V. Put the bypass capacitors (10 μ F in parallel with 0.1 μ F ceramic type) between this pin and AG to get the specified noise characteristics. During power-down, this output voltage is 0 V.

AMPAI, AMPAO

Used for amplifier A. The pin AMPAI is connected to the amplifier A inverting input, and the pin AMPAO is connected to the amplifier A output.

SWA, SWB, SWC

Used for the internal analog switch. The pin SWB connects to the pin SWA or the pin SWC. This is controlled by CR1-B1.

SWD, SWE

Used for the internal analog switch. The pin SWD connects to the pin SWE or not. This is controlled by CR1-B2.

 V_{DD}, V_A

+3 V power supply for analog. V_{DD} is the digital power supply. V_A is the analog power supply. Since these pins are separated in the device, connect them as close as possible on the PCB.

DG, AG1, AG2

Ground. DG is the digital system ground. AG1 and AG2 are connected to the analog system ground. The DG pin must be kept as close as possible to AG1 and AG2 on the PCB.

PDN

Power down and reset control input.

When set to digital "0", the system changes to the power down state and control registers are reset. Since the power down mode is controlled by a logical OR with CR0-B5 of the control register, set CR0-B5 to logic "0" when using this pin.

Be sure to reset the control registers by executing this power down to keep this pin to digital "0" level for 200 ns or longer after the power is turned on and V_{DD} exceeds 2.4 V.

MCK

Master clock input. The frequency must be 2.048 MHz. MCK can be asynchronous with SYNC and BCLK.

BCLK

Shift clock input for the PCM data. The frequency is set in the range of 64 kHz to 2048 kHz.

SYNC

8 kHz synchronous signal input for transmit and receive PCM data. Synchronize this signal with BCLK signal. Refer to Figure 2.

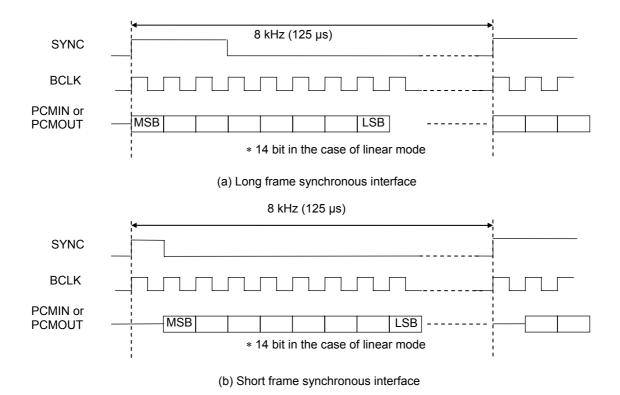
PCMOUT

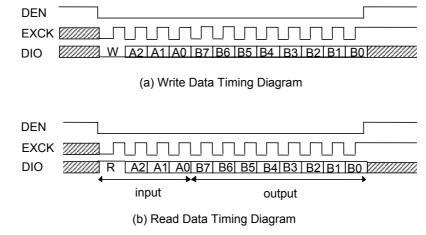
Transmit PCM data output.

This PCM output signal is output from MSB synchronously with the rising edge of BCLK and SYNC. Refer to Figure 2. This is a logic output pin so that external pull-up is not required. This pin outputs logic "L" except during effective PCM data bits, and outputs logic "H" during power-down.

PCMIN

Receive PCM data input. This PCM input signal is shifted in on the falling edge of BCLK and is input from MSB. Refer to Figure 2.




Figure 2 PCM Interface Basic Timing Diagram

DEN, EXCK, DIO

Serial control ports for MCU interface.

Reading and writing data is performed by an external MCU through these pins. Eight registers with eight bits are provided on the devices.

DEN is the "Enable" control signal input, EXCK is the data shift clock input, and DIO is the address and data input or output. Figure 3 shows the input or output timing diagram.

Figure 3 MCU Interface Input/Output Timing

Table 1 shows the register map.

Table 1

Address Control and Detect Data												
Name	A2	A1	A0	B7	B6	B5	B4	B3	B2	B1	B0	R/W
CR0	0	0	0	Α/μ SEL	PON AOUT	PDN ALL	PDN TX	PDN RX	SLP	SLP SEL	LNR	R/W
CR1	0	0	1	_	_	_	_	SHORT FRAME	SW D/E	SW C/A	RX PAD	R/W
CR2	0	1	0	TX ON/OFF	TX GAIN2	TX GAIN1	TX GAIN0	RX ON/OFF	RX GAIN2	RX GAIN1	RX GAIN0	R/W
CR3	0	1	1	Side Tone GAIN2	Side Tone GAIN1	Side Tone GAIN0	TONE ON/OFF	TONE GAIN3	TONE GAIN2	TONE GAIN1	TONE GAIN0	R/W
CR4	1	0	0	DTMF/ OTHERS SEL	TONE SEND	SAO/ VFRO	TONE4	TONE3	TONE2	TONE1	TONE0	R/W
CR5	1	0	1	_	—	—	—		—	—	—	R/W
CR6	1	1	0	VOX ON/OFF	ON LVL1	ON LVL0	_	_	_	_	_	R/W
CR7	1	1	1	VOX OUT	TX NOISE LVL1	TX NOISE LVL0	_	_	_	_	_	R

R/W : Read/Write enable R : Read only register

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	_	–0.3 to +5.0	V
Analog Input Voltage	V _{AIN}	_	–0.3 to V _{DD} +0.3	V
Digital Input Voltage	V _{DIN}	_	–0.3 to V _{DD} +0.3	V
Storage Temperature	T _{STG}	_	–55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{DD}	Voltage must be fixed	+2.4	+3.0	+3.3	V
Operating Temperature	Та		-40	_	+85	°C
Input High Voltage	VIH	To all digital input pins	$0.7 \text{ x } V_{\text{DD}}$		V _{DD}	V
Input Low Voltage	VIL	To all digital input pins	0	_	0.16 x V _{DD}	V
Digital Input Rise Time	t _{ir}	To all digital input pins			50	ns
Digital Input Fall Time	t _{if}	To all digital input pins			50	ns
Digital Output Load	C _{DL}	To all digital output pins			100	pF
Bypass Capacitor for SG	C _{SG}	Between SG and AG	10+0.1			μF
Master Clock Frequency	F _{MCK}	MCK	-0.01%	2.048	0.01%	MHz
	F _{BCK1}	BCLK (A/µ-law)	64		2048	kHz
Bit Clock Frequency	F _{BCK2}	BCLK (Linear)	128		2048	kHz
Synchronous Signal Frequency	F _{SYNC}	SYNC	_	8.0		kHz
Clock Duty Ratio	D _{CLK}	MCK, BCLK, EXCK	40	50	60	%
Sync Pulse Setting Time	T _{SB}	$SYNC \to BCLK$	-100		100	ns
	T _{BS}	$BCLK \rightarrow SYNC$	100		_	ns
Synchronous Signal Width	t _{ws}	SYNC	1BCLK		100	μs

ELECTRICAL CHARACTERISTICS DC Characteristics

$(V_{DD} = 2.4 \text{ V to } 3.3 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		Operation Mode	0	5.0	11.0	mA
	I _{DD1}	No Signal (V _{DD} = 3.0 V)	0	5.0	11.0	IIIA
		Operation Mode				
Power Supply Current	I _{DD2}	No Signal (V _{DD} = 3.0 V)	0	9.0	20.0	mA
		AOUT+, AOUT- or SAO is active				
	I _{DD3}	Power Down Mode	0	1.0	10	
		(V _{DD} = 3.0 V, Ta = 25°C)	0			μΑ
	I _{IH}	$V_{I} = V_{DD}$	—	_	2.0	μA
Input Leakage Voltage	IIL	$V_1 = 0 V$	—	_	0.5	μA
Output High Voltage	V _{OH}	I _{OH} = 0.4 mA	$0.5 \times V_{DD}$	_	V_{DD}	V
Output Low Voltage	V _{OL}	I _{OL} = -1.2 mA	0	0.2	0.4	V
Input Capacitance	CIN		—	5		pF

Analog Interface Characteristics

(V_{DD} = 2.4 V to 3.3 V, Ta = -40°C to +85°C)

		•				
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Resistance	R _{INX}	AMPAI, AIN+, AIN–, PWI	10	_	_	MΩ
Outrast Logal Desistance	R _{LGX1}	AMPAO, GSX, VFRO	20	_		kΩ
Output Load Resistance	R _{LGX2}	SAO, AOUT+, AOUT–	32	—	—	Ω
Output Load Capacitance	C_{LGX}	Analog output pins	—	—	100	pF
	V ₀₁	AMPAO, GSX, VFRO RL = 20 k Ω SAO RL = 32 Ω	_	_	* ¹ 1.3	VPP
Output Amplitude	V _{O2}	AOUT+, AOUT– Differential output V_{DD} = 2.7 to 3.3 V RL = 32 Ω	_	_	3.0	VPP
	* ² V ₀₃	AOUT+, AOUT– Differential output V_{DD} = 3.0 V RL = 30 Ω	_		3.98	VPP
Total Harmonic Distortion	THD₁	SAO, AOUT+, AOUT-(V ₀₁ , V ₀₂)		_	1.0	%
	* ² THD ₂	AOUT+, AOUT– (V _{O3})	_	1.0	_	%
	V _{OFGX1}	AMPAO, GSX	-20	_	20	mV
Input Offset Voltage	V _{OFGX2}	VFRO, SAO, AOUT+, AOUT-	-100	_	100	mV
SG Output Voltage	V_{SG}	SG	_	1.4	_	V
SG Output Impedance	R_{SG}	SG	_	40	80	kΩ
Internal Switch ON Impedance		All internal switches	_	_	300	Ω

*¹-7.7 dBm (600Ω) = 0 dBm0 , +3.17 dBm0 = 1.3 VPP *² Expected value

MSM7732-01

AC Characteristics

					(V _{DD} =	= 2.4 V to 3	8.3 V, Ta	= -40°C)
		C	ondition					
Parameter	Symbol	Freq.	Level	Others	Min.	Тур.	Max.	Unit
		(Hz)	(dBm0)					
	Loss T1	0 to 60			25	—		dB
	L _{OSS} T2	300 to 3000	0	_	-0.15	—	0.20	dB
Transmit Frequency Response	Loss T3	1020				Reference	1	dB
Transmit requercy response	L _{OSS} T4	3300	Ū		-0.15		0.80	dB
	Loss T5	3400			0		0.80	dB
	Loss R6	3968.75			13	—	_	dB
	Loss R1	0 to 3000			-0.15	—	0.20	dB
	Loss R2	1020		_	Reference			dB
Receive Frequency Response	L _{OSS} R3	3300	0		-0.15		0.80	dB
	L _{OSS} R4	3400			0		0.80	dB
	L _{OSS} R5	3968.75			13			dB
	SD T1		3	(*1)	35			dB
	SD T2		0		35			dB
Transmit Signal to Distortion	SD T3	1020	-30		35	_		dB
Ratio	SD T4		-40		28	—		dB
	SD T5		-45		23	—		dB
	SD R1		3	-	35	—		dB
	SD R2		0		35	—		dB
Receive Signal to Distortion	SD R3	1020	-30	(*1)	35	—		dB
Ratio	SD R4		-40		28	—		dB
	SD R5		-45		23	—		dB
	GT T1		3		-0.2		0.2	dB
	GT T2		-10			Reference		dB
Transmit Gain Tracking	GT T3	1020	-40		-0.2	_	0.2	dB
	GT T4		-50		-0.6		0.6	dB
	GT T5		-55		-1.2		1.2	dB
	GT R1		3		-0.2		0.2	dB
	GT R2		-10	Ī	Reference			dB
Receive Gain Tracking	GT R3	1020	-40		-0.2		0.2	dB
-	GT R4		-50		-0.6		0.6	dB
	GT R5		-55		-1.2		1.2	dB

MSM7732-01

AC Characteristics (Continued)

				(•00-	2.4 1 10	5.5 V, Ta-	- +0 01	.0 .00 0)
	Symbol	C	Condition					
Parameter		Freq.	Level	Others	Min.	Тур.	Max.	Unit
		(Hz)	(dBm0)					
Idle Channel Noise	NIDLT		AIN = SG	(*1)			-68	dDm0n
	NIDLR		_	(*1,*2)			-72	dBm0p
Absolute Circus Ameritade	A _{VT}	1000	0	GSX	0.285	0.320 (*3)	0.359	Vrms
Absolute Signal Amplitude	A_{VR}	1020	0	VFRO	0.285	0.320 (*3)	0.359	Vrms
Dever Currly Neise Dejection	P _{SRRT}		Noise		30	_		dB
Power Supply Noise Rejection Ratio	P _{SRRR}	Noise Freq: 0 to 50 kHz	Level: 50 mVpp	_	30	_	_	dB
	t _{SDX} t _{SDR}		1 LSTTL	See	0	_	200	ns
Digital Input/Output Timing PCM	t _{XD1}				0	_	200	ns
Interface	t _{RD1} t _{XD2}		+	Fig. 5				
interface	t _{RD2}	_	100 pF	r ig. o	0		200	ns
	t _{XD3}							
	t _{RD3}				0	—	200	ns
	t _{M1}				50	_	_	ns
	t _{M2}				50			ns
	t _{M3}				50	—		ns
	t _{M4}				50	_		ns
	t _{M5}			0	100	_		ns
Serial Port Digital Input/Output Setting Time	t _{M6}		CL = 50 pF	See	50			ns
Setting Time	t _{M7}			Fig. 6	50			ns
	t _{M8}				0	_	100	ns
	t _{M9}	_			50	—		ns
	t _{M10}	_			50	—		ns
	t _{M11}				0	—	50	ns
Shift Clock Frequency	f _{EXCK}		—	EXCK	—	—	10	MHz

 $(V_{DD} = 2.4 \text{ V to } 3.3 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

*1 Use the P-message weighted filter.
 *2 PCMIN input code "11010101"(A-law) "11111111"(μ-law)
 *3 0.320 Vrms = 0 dBm0 = -7.7 dBm

FEDL7732-01-10

OKI Semiconductor

MSM7732-01

$(V_{DD} = 2.4 \text{ V to } 3.3 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$											
Parameter	Symbol	C	condition	Min.	Тур.	Max.	Unit				
Frequency Difference	D _{FT}	DTMF Tor	nes, Other Tones	-1.5	_	+1.5	%				
	V _{TL}	Transmit Tones	DTMF (Low)	-18	-16	-14	dBm0				
Original (Reference) Tones	V _{TH}	(Gain setting 0 dB)	-16	-14	-12	dBm0					
Signal Level *4	V _{RL}	Receive Tones	DTMF (Low)	-10	-8	-6	dBm0				
	V _{RH}	(Gain setting –6 dB)	DTMF (High) and Other Tones	-8	-6	-4	dBm0				
Relative Level of DTMF Tones	R _{DTMF}	V _{TH} /\	+1	+2	+3	dB					

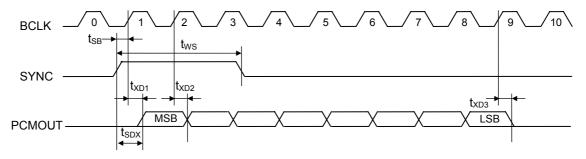
AC Characteristics (DTMF and Other Tones)

*4 Does not include the setting value for the programmable gain.

AC Characteristics (Programmable Gain Stages)

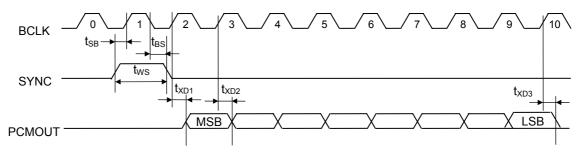
(V_{DD} = 2.4 V to 3.3 V, Ta = -40°C to +85°C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Gain Accuracy	D_G	All gain stages, to programmed value	–1	0	+1	dB

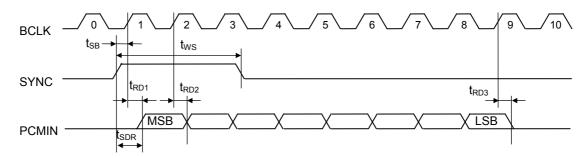

AC Characteristics (Voice Detect Function)

	$2.4 \times 100.0 \times 10^{-10}$					
Parameter	Parameter Symbol Condition			Тур.	Max.	Unit
Voice Detection Time	TVON	Silence>Voice		5	_	ms
	TVOF	(Voice/Silence differential: 10 dB)	140	160	180	ms
Voice Detection Accuracy	DVX	For detection level set values by CR6-B6, B5	-2.5	0	2.5	dB

(V_{DD} = 2.4 V to 3.3 V, Ta = -40°C to +85°C)


TIMING DIAGRAM

Transmit Side PCM Timing (Normal Synchronous Interface)



When $t_{SB} \ge 0$, the Delay of the MSB is defined as t_{XD1} . When $t_{SB} < 0$, the Delay of the MSB is defined as t_{SDX} .

Transmit Side PCM Timing (Short Frame Synchronous Interface)

Receive Side PCM Timing (Normal Synchronous Interface)

Receive Side PCM Timing (Short Frame Synchronous Interface)

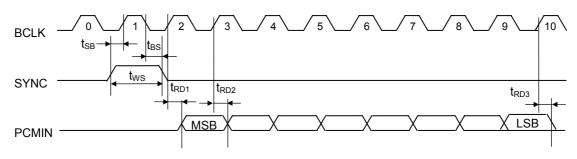
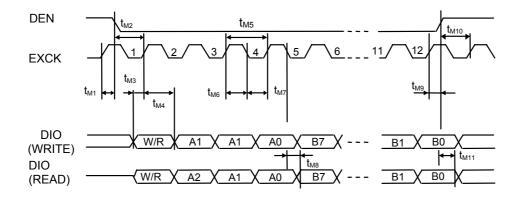



Figure 4 PCM Interface Timing

Serial Port Timing for Microcontroller Interface

Figure 5 Serial Control Port Interface

FUNCTIONAL DESCRIPTION

Control Registers

CR0 (Basic operating mode 1)

	,				Note: I	nitial Value	: Reset sta	te by PDN
	B7	B6	B5	B4	B3	B2	B1	B0
CR0	Α/μ SEL	PON AOUT	PDN ALL	PDN TX	PDN RX	SLP	SLP SEL	LNR
Initial Value	0	0	0	0	0	0	0	0

B7	PCM companding	law select;	0/µ-law, 1/A-law
----	----------------	-------------	------------------

B6..... Power on control for output amps (AOUT+, AOUT-); 0/Power down, 1/Power on

B5	Power down (entire system); 0/Power on, 1/Power down
	When using this data for power down control, set pin PDN at "1" level.
	The control registers are not reset by this signal.

- B4..... Power down (transmit and amplifier A); 0/Power on, 1/Power down
- B3..... Power down (receive only); 0/Power on, 1/Power down
- B2..... Slope filter enable; 0/Slope filter disable, 1/ Slope filter enable

B1..... The type of slope filter select; 0/CASE1, 1/CASE2, refer to Figure 6.

- B0..... PCM interface linear code select;
 - 0/Companding law selected by CR0-B7

1/14-bit linear code (2's complement) in spite of CR0-B7

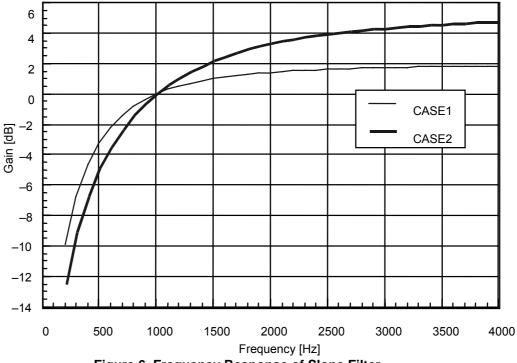


Figure 6 Frequency Response of Slope Filter

MSM7732-01

CR1 (Basic operating mode 2)

	B7	B6	B5	B4	В3	B2	B1	B0
CR1					SHORT FRAME	SW D/E	SW C/A	RX PAD
Initial Value	0	0	0	0	0	0	0	0

B 7	B6	B 5	B4	·Not	used
D/,	ъо,	D_{J}	DT	100	uscu

B3·····Short frame synchronous interf 0/Long frame synchronous int	ace select; erface, 1/Short frame synchronous interface
B2·····Analog switch control	: 0/SWD to SWE open, 1/ SWD to SWE closed
B1·····Analog switch control	: 0/SWB to SWA closed. The SWC pin is high impedance. 1/SWB to SWC closed. The SWA pin is high impedance.
B0·····Receive side PAD	: 1/inserted, 12 dB loss 0/no PAD

	B7	B6	B5	B4	B3	B2	B1	B0
CR2	ТΧ	ТΧ	ТΧ	ΤХ	RX	RX	RX	RX
	ON/OFF	GAIN2	GAIN1	GAIN0	ON/OFF	GAIN2	GAIN1	GAIN0
Initial Value	0	0	1	1	0	0	1	1

CR2 (PCM CODEC operating mode setting and transmit/receive gain adjustment)

B7..... PCM coder disable; 0/Enable, 1/Disable (transmit PCM idle pattern)

B6, B5, B4……… Transmit gain adjustment, refer to Table 2.

B3..... PCM decoder disable; 0/Enable, 1/Disable (receive PCM idle pattern)

B2, B1, B0..... Receive gain adjustment, refer to Table 2.

Table 2											
B6	B5	B4	Transmit Gain	B2	B1	В0	Receive Gain				
0	0	0	–6 dB	0	0	0	–12 dB				
0	0	1	–4 dB	0	0	1	-9 dB				
0	1	0	–2 dB	0	1	0	-6 dB				
0	1	1	0 dB	0	1	1	-3 dB				
1	0	0	+2 dB	1	0	0	0 dB				
1	0	1	+4 dB	1	0	1	+3 dB				
1	1	0	+6 dB	1	1	0	+6 dB				
1	1	1	+8 dB	1	1	1	+9 dB				

The above gain settings table shows the transmit/receive voice signal gain settings and the transmit side gain settings for DTMF tones and other tones. Tone signal transmission is enabled by CR4-B6, and the gain setting is set to the levels shown below.

DTMF tones (low group): -16 dBm0 DTMF tones (high group) and other tones: -14 dBm0

For example, if the transmit gain set value is set to +8 dB (B6, B5, B4) = (1, 1, 1), then the following tones appear at the PCMOUT pin.

DTMF tones (low group): -8 dBm0 DTMF tones (high group) and other tones: -6 dBm0

Gain setting for the side tone (path to the receive side from the transmit side) and the receive side tone is provided by register CR3.

MSM7732-01

CR3 (Side tone and other tone generator gain setting)

	B7	B6	B5	B4	B3	B2	B1	B0
002	Side Tone	Side Tone	Side Tone	TONE	TONE	TONE	TONE	TONE
CR3	GAIN2	GAIN1	GAIN0	ON/OFF	GAIN3	GAIN2	GAIN1	GAIN0
Initial Value	0	0	0	0	0	0	0	0

B7, B6, B5.....Side tone path gain setting, refer to Table 3.

B4····· Tone generator enable; 0/Disable, 1/Enable

B3, B2, B1, B0..... Tone generator gain adjustment for receive side, refer to Table 4.

	Table 3										
B7	B6	B5 Side Tone Path Gain									
0	0	0	OFF								
0	0 0 1 –15 dB										
0	1	0	–13 dB								
0	1	1	–11 dB								
1	0	0	–9 dB								
1	0	1	–7 dB								
1	1	0	–5 dB								
1	1	1	–3 dB								

Table 4

B3	B2	B1	B0	Tone Generator Gain	B3	B2	B1	B0	Tone Generator Gain
0	0	0	0	OFF	1	0	0	0	–20 dB
0	0	0	1	–34 dB	1	0	0	1	–18 dB
0	0	1	0	–32 dB	1	0	1	0	–16 dB
0	0	1	1	–30 dB	1	0	1	1	–14 dB
0	1	0	0	–28 dB	1	1	0	0	–12 dB
0	1	0	1	–26 dB	1	1	0	1	–10 dB
0	1	1	0	–24 dB	1	1	1	0	–8 dB
0	1	1	1	–22 dB	1	1	1	1	–6 dB

The tone generator gain setting table for the receive side, as shown in Table 4, depends upon the following reference levels.

DTMF tones (low group): DTMF tones (high group) and other tones: –2 dBm0 0 dBm0

For example, when selecting -6 dB (B3, B2, B1, B0) = (1, 1, 1, 1) as a tone generator gain, the signal amplitude of each DTMF tone on SAO or VFRO is as follows:

DTMF tones (low group): -8 dBm0 DTMF tones (high group) and other tones: -6 dBm0

MSM7732-01

CR4 (Tone generator operating mode and frequency select)

	B7	B6	B5	B4	B3	B2	B1	B0
	DTMF/	TONE	SAO/					TONEO
CR4	Others SEL	SEND	VFRO	TONE4	TONE3	TONE2	TONE1	TONE0
Initial Value	0	0	0	0	0	0	0	0

B7	DTMF or other tones select; 0/Others, 1/DTMF
B6 ·····	Tone transmit enable (transmit side); 0/Voice signal (transmit), 1/Tone transmit
B5 ·····	Tone output pin select (receive side); 0/VFRO, 1/SAO

B4, B3, B2, B1, B0 ··· Tone frequency setting, refer to Tables 5-1 and 5-2.

(a) B7 = 1 (DTMF tones)

) D/ –	$\mathbf{D} \mathbf{I} = \mathbf{I} \left(\mathbf{D} \mathbf{I} \mathbf{W} \mathbf{I} \right)$ to les)											
	Table 5-1											
B4	B3	B2	B1	B0	Frequency	B4	B3	B2	B1	B0	Frequency	
*	0	0	0	0	697 Hz + 1209 Hz	*	1	0	0	0	852 Hz + 1209 Hz	
*	0	0	0	1	697 Hz + 1336 Hz	*	1	0	0	1	852 Hz + 1336 Hz	
*	0	0	1	0	697 Hz + 1477 Hz	*	1	0	1	0	852 Hz + 1477 Hz	
*	0	0	1	1	697 Hz + 1633 Hz	*	1	0	1	1	852 Hz + 1633 Hz	
*	0	1	0	0	770 Hz + 1209 Hz	*	1	1	0	0	941 Hz + 1209 Hz	
*	0	1	0	1	770 Hz + 1336 Hz	*	1	1	0	1	941 Hz + 1336 Hz	
*	0	1	1	0	770 Hz + 1477 Hz	*	1	1	1	0	941 Hz + 1477 Hz	
*	0	1	1	1	770 Hz + 1633 Hz	*	1	1	1	1	941 Hz + 1633 Hz	
											*Undefined	

(b) B7 = 0 (Other tones)

Table 5-2

-					1001						
B4	B3	B2	B1	B0	Frequency	B4	B3	B2	B1	B0	Frequency
0	0	0	0	0	2730 Hz/2500 Hz 8 Hz wamble	1	0	0	0	0	1200 Hz
0	0	0	0	1	2000 Hz/2667 Hz 8 Hz wamble	1	0	0	0	1	1300 Hz
0	0	0	1	0	1000 Hz/1333 Hz 8 Hz wamble	1	0	0	1	0	_
0	0	0	1	1		1	0	0	1	1	1477 Hz
0	0	1	0	0		1	0	1	0	0	1633 Hz
0	0	1	0	1		1	0	1	0	1	2000 Hz
0	0	1	1	0		1	0	1	1	0	2100 Hz
0	0	1	1	1		1	0	1	1	1	—
0	1	0	0	0		1	1	0	0	0	2400 Hz
0	1	0	0	1	400 Hz	1	1	0	0	1	—
0	1	0	1	0	440 Hz	1	1	0	1	0	2500 Hz
0	1	0	1	1	480 Hz	1	1	0	1	1	<u> </u>
0	1	1	0	0		1	1	1	0	0	<u> </u>
0	1	1	0	1	667 Hz	1	1	1	0	1	2700 Hz
0	1	1	1	0	800 Hz	1	1	1	1	0	<u> </u>
0	1	1	1	1	1000 Hz	1	1	1	1	1	3000 Hz

MSM7732-01

CR5 (Not used)

	B7	B6	B5	B4	B3	B2	B1	B0
CR5								
Initial Value	0	0	0	0	0	0	0	0

B7-B0····· Not used

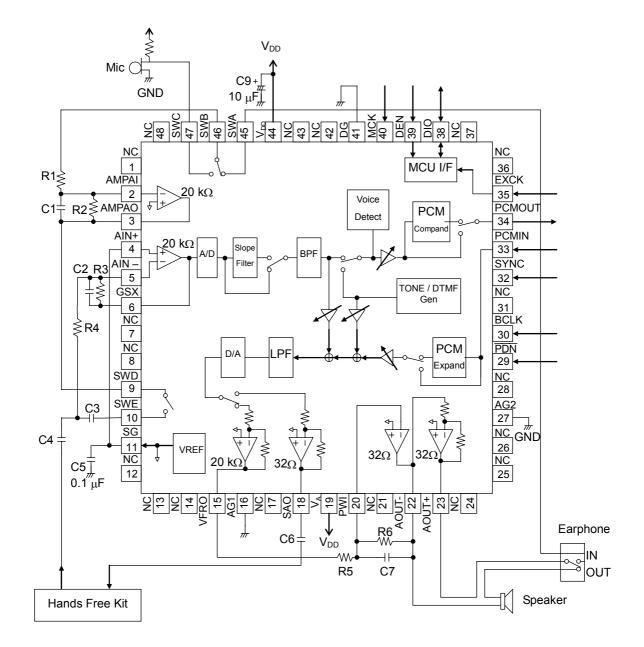
CR6 (VOX function control)

	B7	B6	B5	B4	B3	B2	B1	B0	
CR6	VOX ON/OFF	ON LVL1	ON LVL0	_	_		_	_	
Initial Value	0	0	0	0	0	0	0	0	
B7 VOX function enable; 0/Disable, 1/Enable If B7 is set to a logic "1". B3 should be set to a logic "1".									

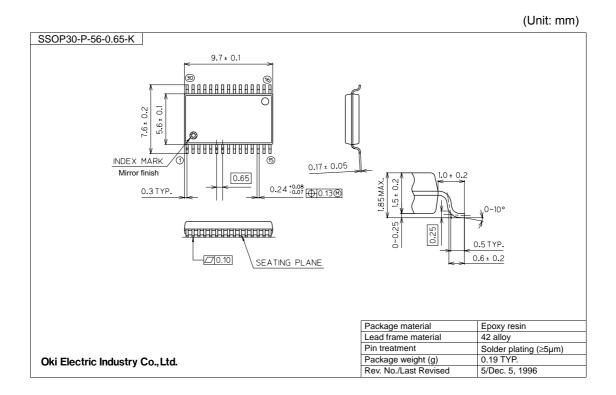
If B7 is set to a logic "1", B3 should be set to a logic "1".
Voice detector level setting;
(0,0): -20 dBm0 (0,1): -26 dBm0 (1,0): -32 dBm0 (1,1): -38 dBm0
Not used

CR7 (Detect register, read only)

	B7	B6	B5	B4	B3	B2	B1	B0
CR7	VOX OUT	TX NOISE LVL1	TX NOISE LVL0					
Initial Value	0	0	0	*	*	*	*	*

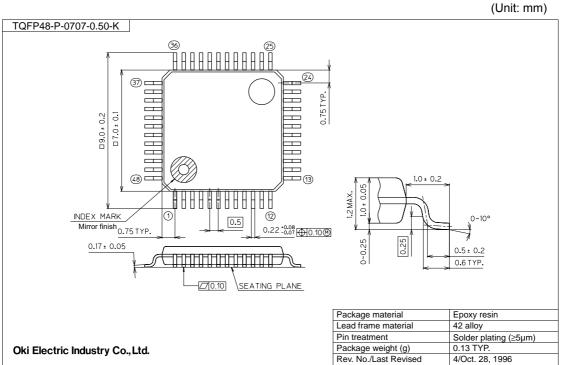

*For IC testing

B7Voice detection; 0/Silence, 1/Voice detection;	t
B6, B5 Voice detect level (indicator);	
(0,0): Below –50 dBm0	(0,1): -40 to -50 dBm0
(1,0): -30 to -40 dBm0	(1,1): Above –30 dBm0


Note: These outputs are enabled when the VOX function is turned on by CR6-B7.

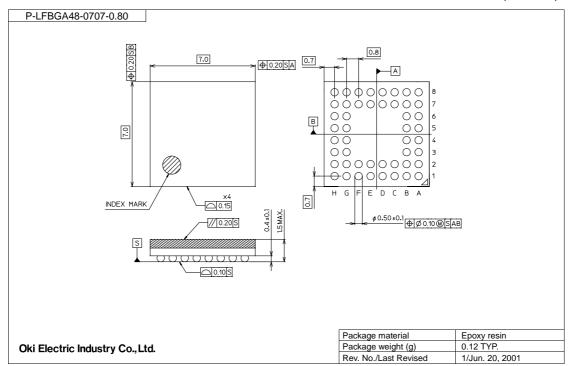
B4, B3, B2, B1, B0..... Not used

APPLICATION CIRCUIT



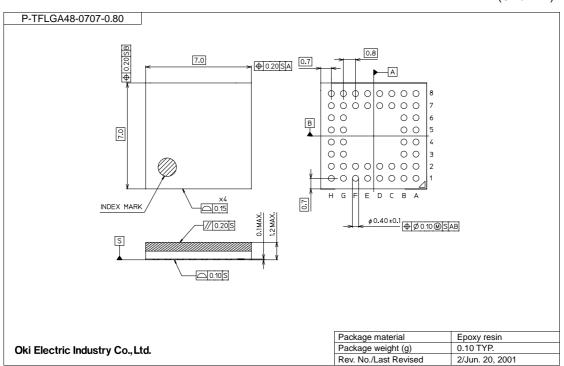
PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package


The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).



Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

Document		Pag		
No.	Date	Previous Edition	Current Edition	Description
FEDL7732-01-04	Nov. 2001	_	_	Edition 4
FEDL7732-01-05	Jan. 15, 2002	26	26	Changed the package outline diagram.
FEDE//32-01-03	Jan. 15, 2002	27	27	Changed the package outline diagram.
FEDL7732-01-06	Jun. 3, 2004	2	2	Addition of RX PAD in the Block Diagram.
FEDL7732-01-07	Jun. 15, 2004	8	8	More clarification of PCMOUT output state
FEDL7732-01-08	Jul. 29, 2004	23	23	Correction of false connection of C2 and R3 in APPLICATION CIRCUIT
FEDL7732-01-09	May 18, 2005	2	2	Addition of TXON/OFF and RXON/OFF in the Block Diagram
FEDL7732-01-10	Nov 2, 2005	10	10	Addition of t _{SB}
	1107 2, 2005	15	15	Addition of t_{SB} Addition of description about t_{XD1} and t_{SDX}

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically authorized by Oki, authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.
 Such applications include but are not limited to traffic and automotive equipment, safety devices, aerospace

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2005 Oki Electric Industry Co., Ltd.