512K x 64 Synchronous Pipeline NBL SRAM

FEATURES

- Fast clock speed: 166, 150, 133, and 100MHz
- Fast access times: 3.5ns, 3.8ns, 4.2ns, and 5.0ns
- Fast OE# access times: 3.5ns, 3.8ns, 4.2ns, and 5.0ns
- Seperate +2.5V ± 5% power supplys for core I/O (Vcc + Vccq)
- Double Word Write Control
- Clock-controlled and registered addresses, data I/Os and control signals
- Packaging:
 - 119 bump BGA package
- Low capacitive bus loading

DESCRIPTION

The WEDC SyncBurst - SRAM family employs highspeed, low-power CMOS designs that are fabricated using an advanced CMOS process. WEDC's 32Mb Sync SRAM integrate two 512K x 32 SRAMs into a single BGA package to provide 512K x 64 configuration. All synchronous inputs pass through registers controlled by a positive-edge-triggered single-clock input (CK). The NBL or No Bus Latency Memory utilizes all the bandwidth in any combination of operating cycles. Address, data inputs, and all control signals except output enable are synchronized to input clock. Output Enable controls the outputs at any given time and to Asynchronous Input. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation and provides increased timing flexibility for incoming signals.

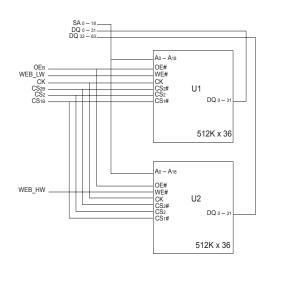

NOTE: NBL = No Bus Latency is equivalent to the industry ZBT™ devices.

FIG. 1 PIN CONFIGURATION

(TOP VIEW)

	1	2	3	4	5	6	7	8	9
Α	DQF	DQF	DQF	DQF	NC	DQ _G	DQ _G	DQ _G	DQ _G
В	DQF	DQF	DQF	DQF	NC	DQg	DQg	DQg	DQg
С	DQE	DQE	DQE	DQE	NC	DQн	DQн	DQH	DQ _H
D	DQE	DQE	DQE	DQE	NC	DQн	DQн	DQн	DQн
Е	NC	NC	NC	Vccq	Vccq	Vccq	NC	NC	NC
F	SA	Vccq	Vcc	Vcc	Vcc	Vcc	Vcc	Vccq	SA
G	SA	CE#	Vss	Vss	Vss	Vss	Vss	SA	SA
Н	SA	NC	Vss	WE ₁ #	Vss	Vss	Vss	SA	SA
J	SA ₁₈	CE ₂ #	SSck	OE#	NC	NC	NC	SA ₁	SA ₀
K	SA	CE ₂	Vss	WE0#	Vss	Vss	Vss	SA	SA
L	SA	NC	Vss	Vss	Vss	Vss	Vss	SA	SA
M	SA	Vccq	Vcc	Vcc	Vcc	Vcc	Vcc	Vccq	SA
N	NC	NC	NC	Vccq	Vccq	Vccq	NC	NC	NC
Р	DQD	DQ _D	DQD	DQ _D	NC	DQA	DQA	DQA	DQA
R	DQD	DQ _D	DQD	DQD	NC	DQA	DQA	DQA	DQA
Т	DQc	DQc	DQc	DQc	NC	DQ _B	DQ _B	DQ _B	DQ _B
U	DQc	DQc	DQc	DQc	NC	DQ _B	DQ _B	DQ _B	DQ _B

BLOCK DIAGRAM

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

FUNCTION DESCRIPTION

The WED2ZL64512S is an NBL SSRAM designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from Read to Write, or vice versa. All inputs (with the exception of OE#) are synchronized to rising clock edges.

Output Enable (OE#) can be used to disable the output at any given time. Read operation is initiated when at the rising edge of the clock, the address presented to the address inputs are latched in the address register, CKE# is driven low, the write enable input signals WE# are driven high. The internal array is read between the first

rising edge and the second rising edge of the clock and the data is latched in the output register. At the second clock edge the data is driven out of the SRAM. During read operation OE# must be driven low for the device to drive out the requested data.

Write operation occurs when WE# is driven low at the rising edge of the clock. The pipe-lined NBL SSRAM uses a late-late write cycle to utilize 100% of the bandwidth. At the first rising edge of the clock, WE# and address are registered, and the data associated with that address is required two cycle later.

TRUTH TABLES

SYNCHRONOUS TRUTH TABLE

CEx#	WE#	OE#	CK	Address Accessed	Operation
Н	Х	Х	1	N/A	Deselect
L	Н	L	1	Current Address	Read Cycle
L	Н	Н	1	N/A	NOP/Dummy Read
Х	Х	Н	1	N/A	Dummy Read
L	L	Х	1	Current Address	Write Cycle
L	L	Х	1	N/A	NOP/Write Abort

NOTES:

- 1. X means "Don't Care."
- 2. The rising edge of clock is symbolized by (↑)
- 3. A continue deselect cycle can only be entered if a deselect cycle is executed first.
- WRITE# = L means Write operation in WRITE TRUTH TABLE.
 WRITE# = H means Read operation in WRITE TRUTH TABLE.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	$-0.3V \le T_A \le +3.6V$
V _{IN} (DQx)	$-0.3V \le T_A \le +3.6V$
Vin (Inputs)	$-0.3V \le T_A \le +3.6V$
Storage Temperature (BGA)	-55°C ≤ T _A ≤ +125°C
Short Circuit Output Current	100mA

^{*}Stress greater than those listed under "Absolute Maximum Ratings: may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (0°C $\leq T_A \leq 70$ °C)

Description	Symbol	Conditions	Min	Max	Units	Notes
Input High (Logic 1) Voltage	VIH		1.7	V _{CC} +0.3	V	1
Input Low (Logic 0) Voltage	VIL		-0.3	0.7	V	1
Input Leakage Current	ILI	OV VIN VCC	-5	5	mA	
Output Leakage Current	ILO	Output(s) Disabled, 0V VIN Vcc	-5	5	mA	
Output High Voltage	Voн	Iон = -1.0mA	2.0		V	1
Output Low Voltage	VoL	IoL = 1.0mA		0.4	V	1
Supply Voltage	Vcc		2.375	2.625	V	1

NOTES: 1. All voltages referenced to Vss (GND)

DC CHARACTERISTICS

Description	Symbol	Conditions	Тур	166 MHz	150 MHz	133 MHz	100 MHz	Units	Notes
Power Supply Current: Operating	lcc	Device Selected; All Inputs \leq V _{IL} or \geq V _{IH} ; Cycle Time = T _{CYC} MIN; V _{CC} = MAX; Output Open		650	600	560	500	mA	1, 2
Power Supply Current: Standby	I _{SB2}	Device Deselected; V_{CC} = MAX; All Inputs $\leq V_{SS}$ + 0.2 or V_{CC} - 0.2; All Inputs Static; CK Frequency = 0	30	60	60	60	60	mA	2
Clock Running Standby Current	I _{SB4}	Device Deselected; V _{CC} = MAX; All Inputs ≤ V _{SS} + 0.2 or V _{CC} - 0.2; Cycle Time = T _{CYC} MIN		140	120	100	80	mA	2

NOTES:

- 1. Icc is specified with no output current and increases with faster cycle times. Icc increases with faster cycle times and greater output loading.
- 2. Typical values are measured at 2.5V, 25°C, and 10ns cycle time.

BGA CAPACITANCE

Description	Symbol	Conditions	Тур	Max	Units	Notes
Control Input Capacitance	CL	T _A = 25°C; f = 1MHz	5	7	pF	1
Input/Output Capacitance (DQ)	Co	T _A = 25°C; f = 1MHz	6	8	pF	1
Address Capacitance	CA	T _A = 25°C; f = 1MHz	5	7	pF	1
Clock Capacitance	Сск	T _A = 25°C; f = 1MHz	3	5	pF	1

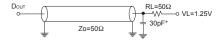
NOTES: 1. This parameter is sampled.

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

AC CHARACTERISTICS

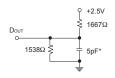
		<u>166MHz</u>		150	MHz	<u>133MHz</u>		<u>100MHz</u>		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Clock Time	tcyc	6.0		6.7		7.5		10.0		ns
Clock Access Time	tcp		3.5		3.8		4.2		5.0	ns
Output enable to Data Valid	toe		3.5		3.8		4.2		5.0	ns
Clock High to Output Low-Z	tızc	1.5		1.5		1.5		1.5		ns
Output Hold from Clock High	tон	1.5		1.5		1.5		1.5		ns
Output Enable Low to output Low-Z	tlzoe	0.0		0.0		0.0		0.0		ns
Output Enable High to Output High-Z	thzoe		3.0		3.0		3.5		3.5	ns
Clock High to Output High-Z	tHZC		3.0		3.0		3.5		3.5	ns
Clock High Pulse Width	tсн	2.2		2.5		3.0		3.0		ns
Clock Low Pulse Width	tcL	2.2		2.5		3.0		3.0		ns
Address Setup to Clock High	tas	1.5		1.5		1.5		1.5		ns
CKE Setup to Clock High	tces	1.5		1.5		1.5		1.5		ns
Data Setup to Clock High	tos	1.5		1.5		1.5		1.5		ns
Write Setup to Clock High	tws	1.5		1.5		1.5		1.5		ns
Chip Select Setup to Clock High	tcss	1.5		1.5		1.5		1.5		ns
Address Hold to Clock high	tан	0.5		0.5		0.5		0.5		ns
CKE Hold to Clock High	tcen	0.5		0.5		0.5		0.5		ns
Data Hold to Clock High	tон	0.5		0.5		0.5		0.5		ns
Write Hold to Clock High	twн	0.5		0.5		0.5		0.5		ns
Chip Select Hold to Clock High	tсsн	0.5		0.5		0.5		0.5		ns

NOTES:

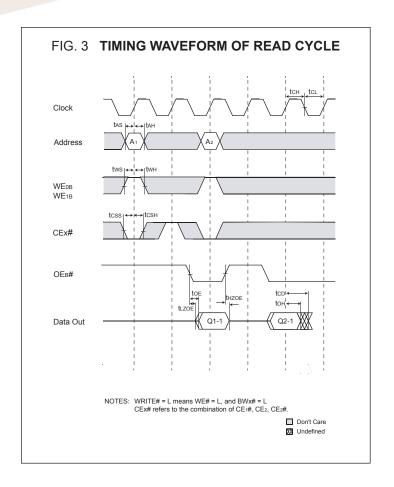

- 1. All Address inputs must meet the specified setup and hold times for all rising clock (CK) edges when ADV is sampled low and CEx# is sampled valid.
 All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.
- 2. Chip enable must be valid at each rising edge of CK (when ADV is Low) to remain enabled.
- 3. A write cycle is defined by WE# low having been registered into the device. A Read cycle is defined by WE# High. Both cases must meet setup and hold times.

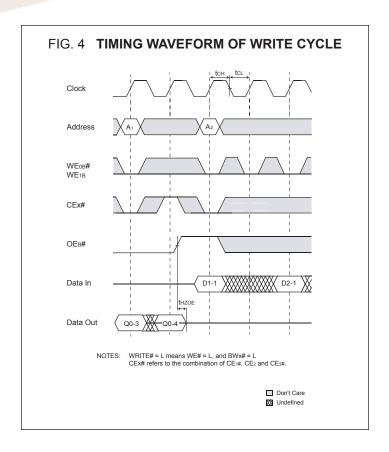
AC TEST CONDITIONS

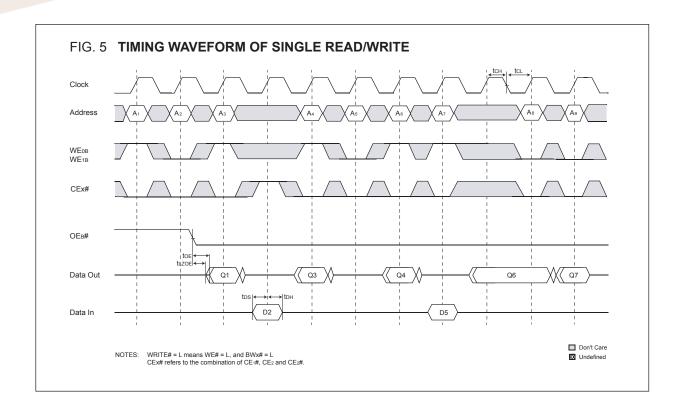
 $(0^{\circ}C \le T_A \le 70^{\circ}C, V_{CC} = 2.5V \pm 5\%, Unless Otherwise Specified)$

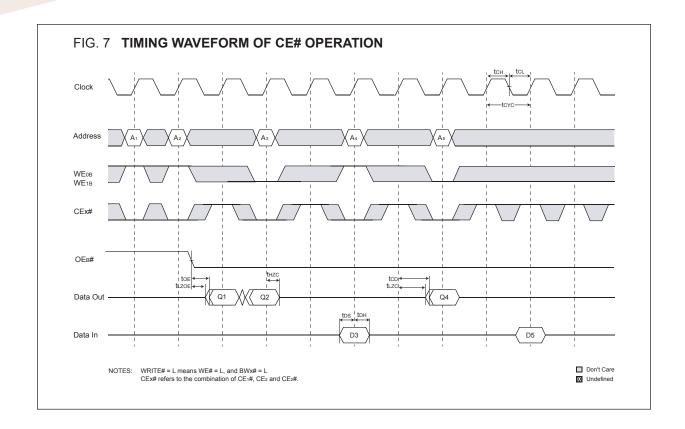

Parameter	Value
Input Pulse Level	0 to 2.5V
Input Rise and Fall Time (Measured at 20% to 80%)	1.0V/ns
Input and Output Timing Reference Levels	1.25V
Output Load	See Output Load (A)

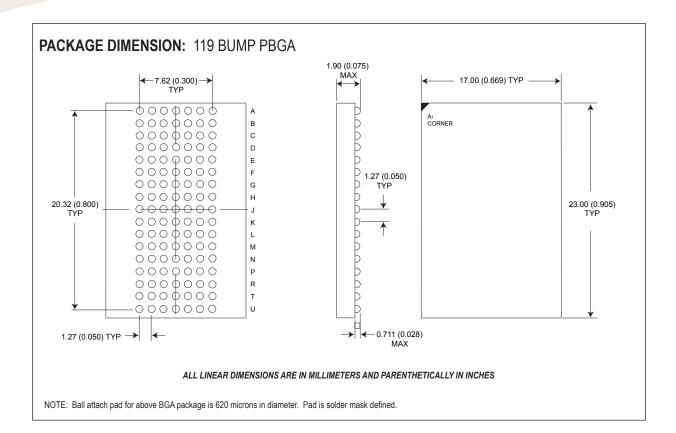
OUTPUT LOAD (A)


OUTPUT LOAD (B)


(FOR tLZC, tLZOE, tHZOE, and tHZC)




*Including Scope and Jig Capacitance


White Electronic Designs Corp. reserves the right to change products or specifications without notice.

ORDERING INFORMATION

COMMERCIAL TEMP RANGE (0°C \leq TA \leq 70°C)

Part Number	Configuration	tco (ns)	Clock (MHz)
WED2ZL64512S35BC	512K x 64	3.5	166
WED2ZL64512S38BC	512K x 64	3.8	150
WED2ZL64512S42BC	512K x 64	4.2	133
WED2ZL64512S50BC	512K x 64	5.0	100