

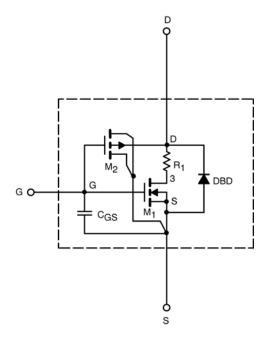
SPICE Device Model Si1304BDL

Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 4.5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

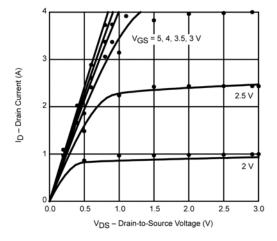
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

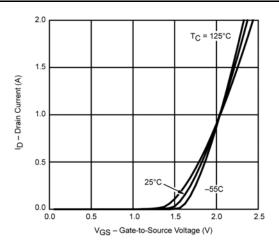
SUBCIRCUIT MODEL SCHEMATIC

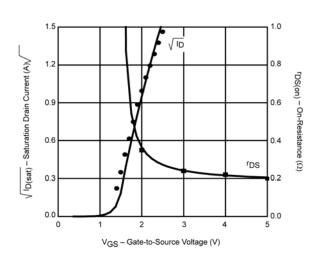
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

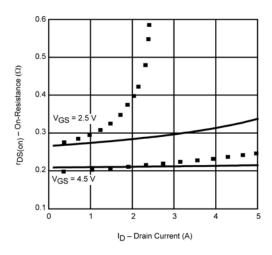
SPICE Device Model Si1304BDL

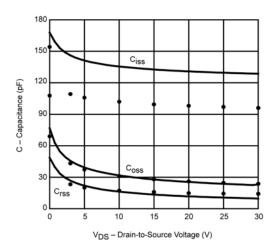
Vishay Siliconix

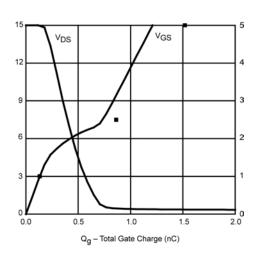

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	-				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS}$ = 4.5 V	12		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 0.9 \text{ A}$	0.21	0.216	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 0.75 \text{ A}$	0.30	0.308	
Forward Transconductance ^a	G fs	V _{DS} = 15 V, I _D = 0.9 A	3	2	S
Diode Forward Voltage ^a	V_{SD}	I _S = 0.28 A	0.78	0.80	V
Dynamic ^b	-				
Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	132	100	pF
Output Capacitance	C _{oss}		28	30	
Reverse Transfer Capacitance	C _{rss}		14	20	
Total Gate Charge	Q_g	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 0.9 A	1.2	1.8	nC
		V _{DS} = 15 V, V _{GS} = 2.5 V, I _D = 0.9 A	0.8	1.1	
Gate-Source Charge	Q _{gs}		0.4	0.4	
Gate-Drain Charge	Q_{gd}		0.6	0.6	


Notes a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si1304BDL Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.