The information disclosed herein was originated by and is the property of MAZeT. MAZeT reserves all patent, proprietary, design, use, sales, manufacturing an reproduction rights thereto. Product names used in this publication are for identification purposes only and may be trademark of their respective companies.

DATA-SHEET

MCS3AS

3-element colour sensor – SMD/SO8

Table of Contents

1.	FUNCTION	. 2
2.	APPLICATION	. 2
3.	FEATURES	. 2
4.	CONSTRUCTION	. 2
5.	MAXIMUM RATINGS / CHARACTERISTICS	. 3
6.	CHARACTERISTIC CURVES	. 4
7.	PACKAGE OVERVIEW	. 5
8.	PIN-CONFIGURATION	. 6
9.	APPLICATION CIRCUIT	. 6
10.	APPLICATION NOTE	. 6
11.	ORDERING INFORMATION	. 7

MAZeT GmbH

Page 1 of 7

		REVISIONS			
DATA-SHEET MCS3AS	REV.	DESCRIPTION	APPROVED		
	1	V1.17	2006-03-01	ĺ	

1. FUNCTION

The colour sensors are made of 3 Si-PIN photo diodes integrated on chip. They are carried out as segments of a ring with the diameter of 2,0 mm. The design as Si-PIN photo diodes allows signal frequencies up to MHz-range. In order to achieve a small cross talk between the photodiodes the individual sectors have been separated from each other by additional structures. Each of these photodiodes is sensitized with dielectric spectral filter for its colour range, preferably for the primary colours red, green and blue.

2. APPLICATION

- Quality control
- Monitoring the production
- Control of manufacturing
- Detection of colour marks

3. FEATURES

Dielectric filters guarantee the good optical properties of the colour sensors, such as:

- high transmission
- slight aging of the filter
- high temperature stability
- high signal frequency
- reduced cross talk
- small size (diameter of the optical sensitive surface ca. 2 mm)

4. CONSTRUCTION

- 3 on chip integrated PIN photo diodes
- dielectric filters for the three colour ranges: red, green and blue
- package design SOP8
- Electrical connections
- three anodes
- one separated diode for minimization of the cross-talk
- one common cathode

The information in this publication is believed to be accurate in all respects at the time	DOC. NO:	Page 2 of 7
in order to improve design or performance characteristics.	DB-99-073e	

 DATA-SHEET MCS3AS
 REV.
 DESCRIPTION
 APPROVED

 1
 V1.17
 2006-03-01

5. MAXIMUM RATINGS / CHARACTERISTICS

 $(TA = 25^{\circ}C; per single diode)$

Description	Symbol	Condition	typ. Value	Unit
Diameter of the light sensitivity area	D		2,0	mm
Light sensitivity area per element	A		0,85	mm²
		$\lambda_{B} = 470 \text{ nm}$	0,26	
Photo sensitivity of the colour ranges	S _{max}	$\lambda_{G} = 570 \text{ nm}$	0,33	A/W
		$\lambda_{\text{R}} = 650 \text{ nm}$	0,41	
	λ_{B}		400 - 510	
Field of the spectral sensitivity $\pm2\%^*\lambda$	λ_{G}		490 - 610	nm
	λ_{R}		590 - 750	
Rise and fall time of the photo-current	t _r , t _r		<1	μs
Noise equivalent power	NEP	$f_{R} = 100Hz$	<10 ⁻¹³	W/√Hz
Cross talk			1	%
Angle of incidence	φ	$\Delta\lambda_{(Filter)} < 1\%^*\lambda$	8	Grad
Operating temperature range	T _{op}		0 +70	°C
Storage temperature range	T _{st}		-20 +80	°C
MSL (Moisture Sensitivity Level)		-	1	-
Soldering temperature	Т	23 sec	240	°C
Reference voltage			0,4	V
(see also chapter 9 Application Circuit)	VNEF		VDD-0,4	v
Reverse voltage	V _r		05	V

The information in this publication is believed to be accurate in all respects at the time	DOC. NO:	Page 3 of 7
of publication. MAZeT reserves the right to make changes in its products without notice		r uge o or r
in order to improve design or performance characteristics.	DD-99-073e	

USA: LASER COMPONENTS IG, Inc., Phone: +1 603 821 7040, Fax: +1 603 821 7041, info@laser-components.com Great Britain: LASER COMPONENTS (UK) Ltd., Phone: +44 1245 491 499, Fax: +44 1245 491 801, info@lasercomponents.co.uk

REVISIONS

DATA-SHEET MCS3AS		REVISIONS					
			REV.	. DESCRIPTION		APPROVED	
				1	V1.17		2006-03-01
	9. PIN	N-CONFIGURATION					
	(Top view	w)					
	PIN	description				MCG2	
	1	A3 green			A3 1	TOP VIEW (Not to Scale)	8 K
	2	nc			NC 2		7 TrD
	3	nc					
	4	A2 blue			NC 3		6 NC
	5	A1 red					
	6	nc			A2 4	SOP 8	5 A1
	7	TrD				501.8	
	8	K common cathode					
						SOP8- package	

10. APPLICATION CIRCUIT

Opposite figure shows a circuit for the conversion of photo current to an equivalent voltage. These voltage can be processed e.g. with an ADC. By the selection of suitable resistors the output voltage range can be adjusted to the photo current value. (for example the pin-programmable transimpedance amplifier MTI04 with the resistors $25k\Omega$, $500k\Omega$ and $5M\Omega$)

11. APPLICATION NOTE

It is recommended to use a light source with low infrared radiation for optimal operations of the colour sensor.

The information in this publication is believed to be accurate in all respects at the time	DOC. NO:	Page 6 of 7
of publication. MAZeT reserves the right to make changes in its products without notice		r age o or r
in order to improve design or performance characteristics.	DB-99-073e	

12. ORDERING INFORMATION

Colour sensor MCS3 with SOP8-package + transparent encapsulated (plastic) MCS3AS Evaluation board for JENCOLOUR sensors MCS-EB1

WARNINGS

Personal Injury – Do not use these products as safety or emergency stop devices, or in any other applications where failure of the product could result in personal injury. **Failure to comply with these instructions could result in death or serious injury.**

Misuse of Documentation – The information presented in this data sheet is for reference only. Because this products are under development do not use this document as product installation guide. Before you start any development ask your supplier for the latest version of this sheet. **Failure to comply with these instructions could result in death or serious injury.**

Page 7 of 7

www.lasercomponents.com

Issue: 07/06 / V5 / HW / mazet/mcs3as.pdf

Germany and other countries: LASER COMPONENTS GmbH, Phone: +49 8142 2864 0, Fax: +49 8142 2864 11, info@lasercomponents.com USA: LASER COMPONENTS IG, Inc., Phone: +1 603 821 7040, Fax: +1 603 821 7041, info@laser-components.com Great Britain: LASER COMPONENTS (UK) Ltd., Phone: +44 1245 491 499, Fax: +44 1245 491 801, info@lasercomponents.co.uk