

Product Description

Stanford Microdevices' SGA-5589 is a high performance cascadeable 50-ohm amplifier designed for operation at voltages as low as 3.9V. This RFIC uses the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process featuring 1 micron emitters with F_T up to 50 GHz.

This circuit uses a darlington pair topology with resistive feedback for broadband performance as well as stability over its entire temperature range. Internally matched to 50 ohm impedance, the SGA-5589 requires only DC blocking and bypass capacitors for external components.

SGA-5589

DC-4000 MHz Silicon Germanium HBT Cascadeable Gain Block

Product Features

- DC-4000 MHz Operation
- Single Voltage Supply
- High Output Intercept: +33 dBm typ. at 850 MHz
- Low Current Draw: 60mA at 3.9V typ.
 Low Noise Figure: 3dB typ. at 850 MHz

Applications

- Oscillator Amplifiers
- PA for Low Power Applications
- IF/ RF Buffer Amplifier
- Drivers for CATV Amplifiers

Symbol	Parameters: Test Conditions: $Z_0 = 50$ Ohms, $I_D = 60$ mA, $T = 25$ °C		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		18.2 16.2 15.1	
IP ₃	Third Order Intercept Point Power out per tone = 0 dBm	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		32.9 29.2 27.7	
S ₂₁	Small Signal Gain	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB		24.1 20.8 19.5	
Bandwidth	(Determined by S ₁₁ , S ₂₂ Values)		MHz		4000	
S ₁₁	Input VSWR	f = DC-4000 MHz	1		1.6:1	
S ₂₂	Output VSWR	f = DC-4000 MHz	-		1.6:1	
S ₁₂	Reverse Isolation	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB		27.3 25.5 24.1	
NF	Noise Figure, Z _s = 50 Ohms	f = 1950 MHz	dB		3.4	
V _D	Device Voltage		V		3.9	
Rth,j-l	Thermal Resistance (junction - lead)		° C/W		97	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices one authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

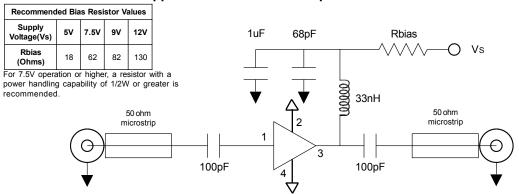
Absolute Maximum Ratings

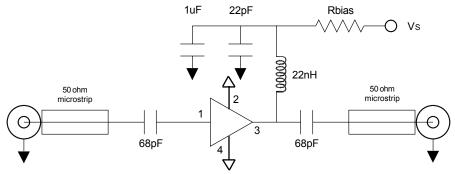
Operation of this device above any one of these parameters may cause permanent damage.

Bias Conditions should also satisfy the following expression: I_DV_D (max) < $(T_J - T_{OP})$ /Rth, j-I

Parameter	Value	Unit
Supply Current	120	mA
Operating Temperature	-40 to +85	С
Maximum Input Power	+5	dBm
Storage Temperature Range	-40 to +150	С
Operating Junction Temperature	+150	С

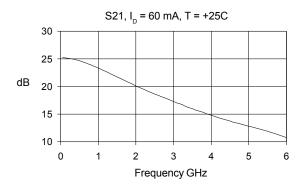
Key parameters, at typical operating frequencies:

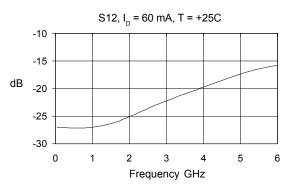

	Typical		Test Condition
Parameter	25°C	Unit	(I _D = 60 mA, unless otherwise noted)
500 MHz			
Gain	24.9	dB	
Noise Figure	2.8	dB	$Z_s = 50 \text{ Ohms}$
Output IP3	31.6	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	17.9	dBm	
Input Return Loss	20.0	dB	
Reverse Isolation	27.2	dB	
850 MHz			
Gain	24.1	dB	
Noise Figure	3.0	dB	$Z_{\rm s}$ = 50 Ohms
Output IP3	32.9	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	18.2	dBm	
Input Return Loss	16.9	dB	
Reverse Isolation	27.3	dB	
1950 MHz			
Gain	20.8	dB	
Noise Figure	3.4	dB	$Z_{\rm S}$ = 50 Ohms
Output IP3	29.2	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	16.2	dBm	
Input Return Loss	13.2	dB	
Reverse Isolation	25.5	dB	
2400 MHz			
Gain	19.5	dB	
Noise Figure	3.6	dB	$Z_s = 50 \text{ Ohms}$
Output IP3	27.7	dBm	Tone spacing = 1 MHz, Pout per tone = 0 dBm
Output P1dB	15.1	dBm	
Input Return Loss	12.5	dB	
Reverse Isolation	24.1	dB	

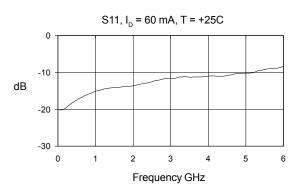


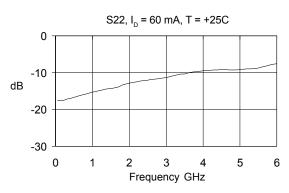
Pin #	Function	Description	Device Schematic
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
2	GND	Connection to ground. Use via holes for best performance to reduce lead inductance. Place vias as close to ground leads as possible.	
3		RF output and bias pin. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of the bias network should be well bypassed.	
4	GND	Same as Pin 2.	

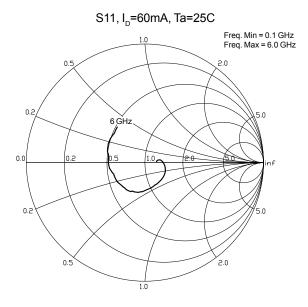
Application Schematic for Operation at 850 MHz

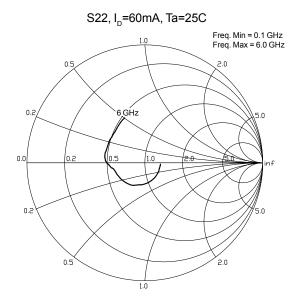


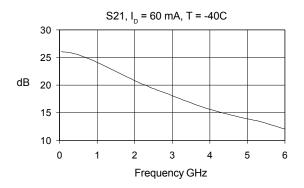

Application Schematic for Operation at 1950 MHz

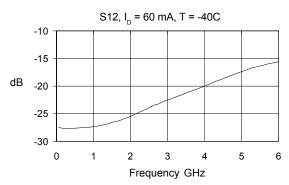


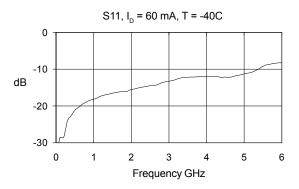


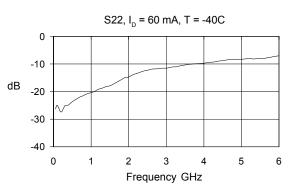


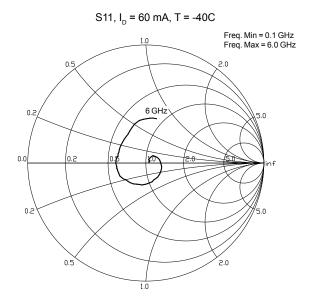


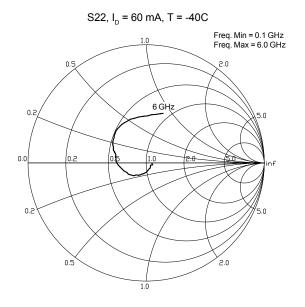


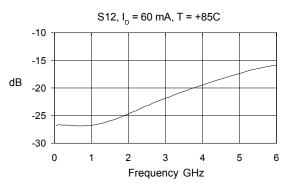


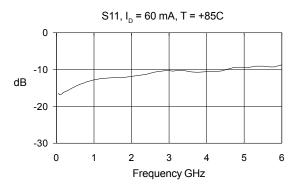


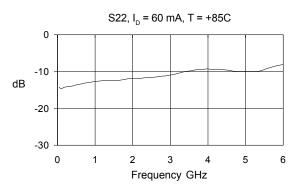


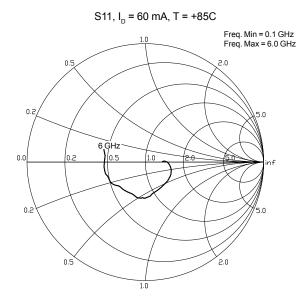






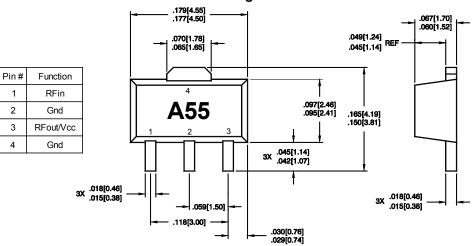




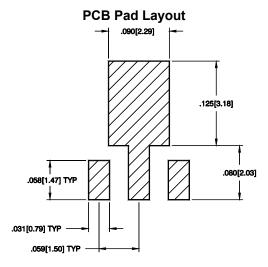


Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed.

SGA-5589 DC-4000 MHz 3.9V SiGe Amplifier


Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SGA-5589	13"	3000


Part Symbolization

The part will be symbolized with "A55" designator on the top surface of the package.

Package Dimensions

Pin assignments shown for reference only, not marked on part

DIMENSIONS ARE IN INCHES [MM]