

Silicon Tuning Diode

These devices are designed for general frequency control and tuning applications. They provide solid–state reliability in replacement of mechanical tuning methods.

- High Q with Guaranteed Minimum Values at VHF Frequencies
- Controlled and Uniform Tuning Ratio
- Surface Mount Package
- Device Marking: X5

MMVL409T1

VOLTAGEVARIABLE CAPACITANCEDIODE

ORDERING INFORMATION

Device Package		Shipping		
MMVL409T1	SOD-323	3000 / Tape & Reel		

MAXIMUM RATINGS

Symbol	Rating	Value	Unit	
V_R	Continuous Reverse Voltage	20	Vdc	
I _F	Peak Forward Current	200	mAdc	

THERMALCHARACTERISTICS

Symbol	mbol Characteristic		Unit
P₀	Total Device Dissipation FR-5 Board,*	200	mW
	$T_A = 25$ °C		
	Derate above 25°C	1.57	mW/°C
$R_{\theta JA}$	Thermal Resistance Junction to Ambient	635	°C/W
T_J, T_{stg}	Junction and Storage Temperature	150	°C

^{*}FR-4 Minimum Pad

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse BreakdownVoltage	$V_{(BR)R}$	20	_	_	Vdc
$(I_R = 10 \mu Adc)$					
Reverse Voltage Leakage Current	I _R	_	_	0.1	μAdc
$(V_R = 15 \text{ Vdc})$					
Diode Capacitance Temperature Coefficient	TCc	_	300	_	ppm/°C
$(V_R = 3.0 \text{ Vdc}, f = 1.0 \text{ MHz})$					

	C _t , Diode Capacitance V _R = 3.0 Vdc, f = 1.0 MHz pF		Q, Figure of Merit $V_R = 3.0 \text{ Vdc}$ f = 50 MHz	. C	itance Ratio ₃/C₅ MHz(1)	
Device	Min	Nom	Max	Min	Min	Max
MMVL409T1	26	29	32	200	1.5	1.9

^{1.} C_R is the ratio of C_t measured at 3 Vdc divided by Ct measured at 8 Vdc.

MMVL409T1

TYPICAL CHARACTERISTICS

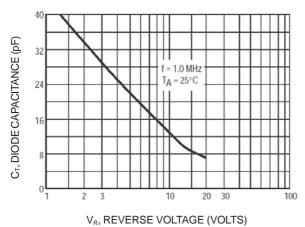


Figure 1. Diode Capacitance

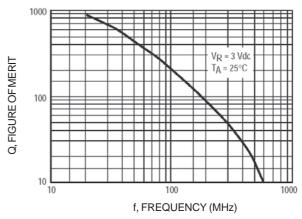


Figure 2. Figure of Merit

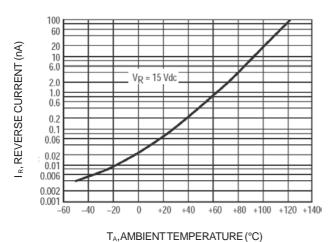


Figure 3. Leakage Current

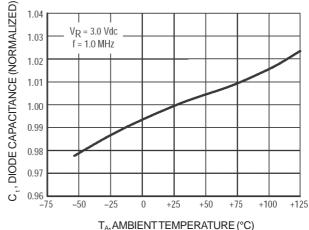


Figure 4. Diode Capacitance