General Purpose GaAs FETs

August 2006 - Rev 03-Aug-06

CFB0101 Series

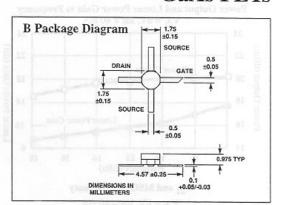
CFB0101 Series

Product Specifications December 1997

(1 of 2)

General Purpose GaAs FETs

Features


- ☐ High Gain
- ☐ 19 dBm Power Output
- ☐ Ion Implanted Material
- ☐ 70 Mil Stripline Commercial Package

Applications

- ☐ Point-to-Point Radios
- ☐ Test Equipment
- ☐ General Purpose Commercial Applications
- ☐ Industrial Applications

Description

The CFB0101-G series is a family of high-gain FETs intended for general purpose applications. Manufactured in Celeritek's proprietary 0.25 micron ion-implanted process, and assembled in an industry standard 70 mil stripline pack-

age, this cost-efective family of devices is ideally suited for commercial applications where reliability, performance, and value are critical.

Specifications (TA = 25°C)

Parameter		Bias Ids (mA)	Frequency (GHz)	Units	Per			
	Vds (V)				Grade	Min	Тур	Max
P _{1dB}	6.0	40.0	12.0	dBm	G1 G2	19.0 18.0	19.5 18.5	
01	The state of the s		2	2.5	G3	17.0	17.5	3
$^{ m G_L}$	6.0	40.0	12.0	dB	G1 G2 G3	9.0 9.0 8.0	9.5 9.5 8.5	=
IS ₂₁ 2	6.0	40.0	2.0 10.0 18.0	dB dB dB	res	337-251-35 AF A	14.0 8.5 4.9	89101
NFopt	6.0	40.0	12.0	dB	gsM) (8b)	(gnA)	2.8	(sHa)
gm	Vds = 3.0V	Vgs = 0V	-31.6	mS	14.0 5.01	-35	60.0	2.0
I _{dss}	Vds = 3.0V	Vgs = 0V	-26.3	mA	12.1 4.00	40.0	60.0	120.0
V_p	Vds = 3.0V	Ids = 1mA	1,64-	Volts	PTF 0.0	-0.7	-1.3	-2.5
BVgd	Igd = 100 μA	0.09 14	-21.3	Volts	8.5 2.60	-5.5	-8.0	0.0
R _{th}	0.32 -1	0.00 10 0.00	-20.5	°C/W	12 43	142	250	0.3

Absolute Maximum Ratings

Typical Noise Parameters (Vds = 6V, Ids = 40 mA)

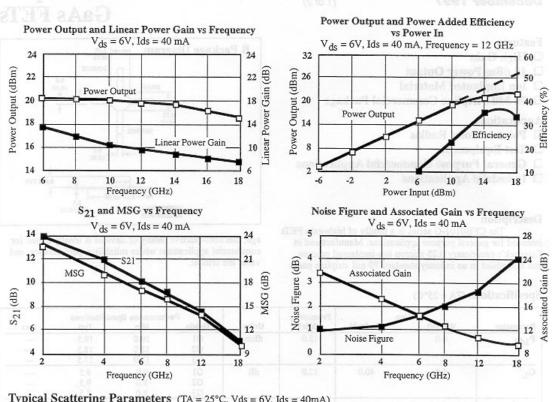
Parameter	Symbol	Rating	Freq	NFopt	GA	Gamma Opt		Rn/50
primary scenary is need.	ERSON STREET	on narian, Colmber Western Co.	(GHz)	opt	(dB)	Mag	Ang	scen Jeansly
Drain-Source Voltage	Vds	8V	2.0	1.06	21.2	0.76	39	1.51
Gate-Source Voltage	Vgs	-5V	4.0	1.33	17.0	0.60	80	0.62
Drain Current	Ids	Idss	6.0	1.68	14.6	0.50	119	0.14
and the way to be the description of the same and		800mW	8.0	2.00	12.7	0.46	157	0.04
Continuous Dissipation	Pt	oudinw	10.0	2.30	11.5	0.46	175	0.16
RF Power In	Pin	+17 dBm	12.0	2.60	10.7	0.50	-133	0.54
Channel Temperature	Tch	175°C	14.0	3.00	10.2	0.56	-100	1.07
Storage Temperature	Tstg	-65°C to +175°C	16.0	3.49	10.0	0.62	-70	1.71
Storage remperature	istg	-03 C to +173 C	18.0	4.09	9.8	0.67	-42	2.38

3236 Scott Boulevard

Santa Clara, California 95054 [117] Phone: (408) 986-5060

Fax: (408) 986-5095

General Purpose GaAs FETs


August 2006 - Rev 03-Aug-06

CFB0101 Series

CFB0101 Series

Product Specifications - December 1997

Typical Performance (TA = 25°C)

Typical Scattering Parameters (TA = 25°C, Vds = 6V, Ids = 40mA)

Frequency (GHz)	≥ S ₁₁		S ₂₁ 85			S ₁₂			S ₂₂		MSG
	(Mag)	(Ang)	(dB)	(Mag)	(Ang)	(dB)	(Mag)	(Ang)	(Mag)	(Ang)	(dB)
2.0	0.94	-35	14.0	5.01	148	-31.6	0.03	63	0.53	-13	22.8
4.0	0.82	-77	12.1	4.03	109	-26.3	0.05	47	0.53	-40	19.2
6.0	0.70	-110	10.6	3.39	79	-24.1	0.06	35	0.52	-58	17.3
8.0	0.58	-152	9.9	3.13	50	-22.4	0.08	25	0.45	-70	16.1
10.0	0.58	169	8.5	2.66	21	-21.3	0.09	14	0.35	-104	14.9
12.0	0.55	142	7.5	2.37	-2	-20.5	0.09	10	0.40	-122	14.0
14.0	0.60	104	6.6	2.14	-28	-19.0	0.11	-2	0.32	-147	12.8
16.0	0.67	87	5.6	1.91	-53	-17.7	0.13	-13	0.39	166	11.7
18.0	0.69	60	4.9	1.76	-79	-16.7	0.15	-32	0.46	146	10.8

Celeritek reserves the right to make changes without further notice to any products herein. Celeritek makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Celeritek assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Celeritek does not convey any license under its patent rights nor the rights of others. Celeritek products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Celeritek product could create a situation where personal injury or death may occur. Should Buyer purchase or use Celeritek products for any such unintended or unauthorized application. Buyer shall indemnify and hold Celeritek and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attomery fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Celeritek was negligent regarding the design or manufacture of the part. Celeritek is a registered trademark of Celeritek, inc. Celeritek, Inc. is an Equal Opportunity/Affirmative Action Employer.

3236 Scott Boulevard, Santa Clara, California 95054 Phone: (408) 986-5060 Fax: (408) 986-5095

[118]