Features

- High Performance, Low Power AVR ${ }^{\circledR}$ 8-bit Microcontroller
- Advanced RISC Architecture
- 124 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 1 MIPS Throughput at 1 MHz
- Nonvolatile Program and Data Memories
- 40K Bytes of In-System Self-Programmable Flash, Endurance: 10,000 Write/Erase Cycles
- Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program
True Read-While-Write Operation
- 512 bytes EEPROM, Endurance: 100,000 Write/Erase Cycles
- 2K Bytes Internal SRAM
- Programming Lock for Software Security
- On-chip Debugging
- Extensive On-chip Debug Support
- Available through JTAG interface
- Battery Management Features
- Two, Three, or Four Cells in Series
- Deep Under-voltage Protection
- Over-current Protection (Charge and Discharge)
- Short-circuit Protection (Discharge)
- Integrated Cell Balancing FETs
- High Voltage Outputs to Drive Charge/Precharge/Discharge FETs
- Peripheral Features
- One 8-bit Timer/Counter with Separate Prescaler, Compare Mode, and PWM
- One 16-bit Timer/Counter with Separate Prescaler and Compare Mode
- 12-bit Voltage ADC, Eight External and Two Internal ADC Inputs
- High Resolution Coulomb Counter ADC for Current Measurements
- TWI Serial Interface for SM-Bus
- Programmable Wake-up Timer
- Programmable Watchdog Timer
- Special Microcontroller Features
- Power-on Reset
- On-chip Voltage Regulator
- External and Internal Interrupt Sources
- Four Sleep Modes: Idle, Power-save, Power-down, and Power-off
- Packages
- 48-pin LQFP
- Operating Voltage: 4.0-25V
- Maximum Withstand Voltage (High-voltage pins): 28V
- Temperature Range: $-30^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Speed Grade: 1 MHz

1. Pin Configurations

Figure 1-1. Pinout ATmega406.

Top View

1.1 Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

2. Overview

The ATmega406 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega406 achieves throughputs approaching 1 MIPS at 1 MHz .

2.1 Block Diagram

Figure 2-1. Block Diagram

The ATmega406 provides the following features: a Voltage Regulator, dedicated Battery Protection Circuitry, integrated cell balancing FETs, high-voltage analog front-end, and an MCU with two ADCs with On-chip voltage reference for battery fuel gauging.
The voltage regulator operates at a wide range of voltages, 4.0-25 volts. This voltage is regulated to a constant supply voltage of nominally 3.3 volts for the integrated logic and analog functions.

The battery protection monitors the battery voltage and charge/discharge current to detect illegal conditions and protect the battery from these when required. The illegal conditions are deep under-voltage during discharging, short-circuit during discharging and over-current during charging and discharging.

The integrated cell balancing FETs allow cell balancing algorithms to be implemented in software.

The MCU provides the following features: 40K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 2K byte SRAM, 32 general purpose working registers, 18 general purpose I/O lines, 11 high-voltage I/O lines, a JTAG Interface for On-chip Debugging support and programming, two flexible Timer/Counters with PWM and compare modes, one Wake-up Timer, an SM-Bus compliant TWI module, internal and external interrupts, a 12-bit Sigma Delta ADC for voltage and temperature measurements, a high resolution Sigma Delta ADC for Coulomb Counting and instantaneous current measurements, a programmable Watchdog Timer with internal Oscillator, and four software selectable power saving modes.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The Idle mode stops the CPU while allowing the other chip function to continue functioning. The Power-down mode allows the voltage regulator, battery protection, regulator current detection, Watchdog Timer, and Wake-up Timer to operate, while disabling all other chip functions until the next Interrupt or Hardware Reset. In Power-save mode, the Wake-up Timer and Coulomb Counter ADC continues to run.

The device is manufactured using Atmel's high voltage high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System, by a conventional non-volatile memory programmer or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash, fuel gauging ADCs, dedicated battery protection circuitry, Cell Balancing FETs, and a voltage regulator on a monolithic chip, the Atmel ATmega406 is a powerful microcontroller that provides a highly flexible and cost effective solution for Li-ion Smart Battery applications.

The ATmega406 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and On-chip Debugger.

2.2 Pin Descriptions

2.2.1 VFET

High voltage supply pin. This pin is used as supply for the internal voltage regulator, described in "Voltage Regulator" on page 114. In addition the voltage level on this pin is monitored by the battery protection circuit, for deep-under-voltage protection. For details, see "Battery Protection" on page 125.

2.2.2 VCC

2.2.3 VREG

Output from the internal Voltage Regulator. Used for external decoupling to ensure stable regulator operation. For details, see "Voltage Regulator" on page 114.
2.2.4 VREF

Internal Voltage Reference for external decoupling. For details, see "Voltage Reference and Temperature Sensor" on page 121.

2.2.5 VREFGND

Ground for decoupling of Internal Voltage Reference. For details, see "Voltage Reference and Temperature Sensor" on page 121.

2.2.6 GND

Ground
2.2.7 SGND

Signal ground pin, used as reference for Voltage-ADC conversions. For details, see "Voltage ADC - 10-channel General Purpose 12-bit Sigma-Delta ADC" on page 116.

2.2.8 Port A (PA7:PA0)

PA3:PAO serves as the analog inputs to the Voltage A/D Converter.
Port A also serves as a low-voltage 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega406 as listed in "Alternate Functions of Port A" on page 68.

2.2.9 Port B (PB7:PB0)

Port B is a low-voltage 8 -bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega406 as listed in "Alternate Functions of Port B" on page 70.

2.2.10 Port C (PCO)

Port C is a high voltage Open Drain output port.

2.2.11 Port D (PD1:PD0)

Port D is a low-voltage 2-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega406 as listed in "Alternate Functions of Port D" on page 72.

2.2.12 SCL

SMBUS clock, Open Drain bidirectional pin.

2.2.13 SDA

2.2.14 OC/OD/OPC

High voltage output to drive external Charge/Discharge/Pre-charge FETs. For details, see "FET Control" on page 133.

2.2.15 PI/NI

Unfiltered positive/negative input from external current sense resistor, used by the battery protection circuit, for over-current and short-circuit detection. For details, see "Battery Protection" on page 125.
2.2.16 PPI/NNI

Filtered positive/negative input from external current sense resistor, used to by the Coulomb Counter ADC to measure charge/discharge currents flowing in the battery pack. For details, see "Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC" on page 106.

2.2.17 NV/PV1/PV2/PV3/PV4

NV, PV1, PV2, PV3, and PV4 are the inputs for battery cells 1, 2, 3 and 4, used by the Voltage ADC to measure each cell voltage. For details, see "Voltage ADC - 10-channel General Purpose 12-bit Sigma-Delta ADC" on page 116.

2.2.18 PVT

PVT defines the pull-up level for the OD output.
2.2.19 BATT

Input for detecting when a charger is connected. This pin also defines the pull-up level for OC and OPC outputs.

2.2.20 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 11 on page 38. Shorter pulses are not guaranteed to generate a reset.

2.2.21 XTAL1

Input to the inverting Oscillator amplifier.

2.2.22 XTAL2

Output from the inverting Oscillator amplifier.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	BPPLR	-	-	-	-	-	-	BPPLE	BPPL	128
(0xF7)	BPCR	-	-	-	-	DUVD	SCD	DCD	CCD	128
(0xF6)	CBPTR	SCPT[3:0]				OCPT[3:0]				129
(0xF5)	BPOCD	DCDL[3:0]				CCDL[3:0]				130
(0xF4)	BPSCD	-	-	-	-	SCDL[3:0]				130
(0xF3)	BPDUV	-	-	DUVT1	DUVT0	DUDL[3:0]				131
(0xF2)	BPIR	DUVIF	COCIF	DOCIF	SCIF	DUVIE	COCIE	DOCIE	SCIE	132
(0xF1)	CBCR	-	-	-	-	CBE4	CBE3	CBE2	CBE1	137
(0xF0)	FCSR	-	-	PWMOC	PWMOPC	CPS	DFE	CFE	PFD	134
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	CADICH	CADIC[15:8]								111
(0xE8)	CADICL	CADIC[7:0]								111
(0xE7)	CADRDC	CADRDC[7:0]								112
(0xE6)	CADRCC	CADRCC[7:0]								112
(0xE5)	CADCSRB	-	CADACIE	CADRCIE	CADICIE	-	CADACIF	CADRCIF	CADICIF	110
(0xE4)	CADCSRA	CADEN	-	CADUB	CADAS1	CADASO	CADSI1	CADSIO	CADSE	109
(0xE3)	CADAC3	CADAC[31:24]								111
(0xE2)	CADAC2	CADAC[23:16]								111
(0xE1)	CADAC1	CADAC[15:8]								111
(0xE0)	CADAC0	CADAC[7:0]								111
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	-	-	-	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	BGCRR	BGCR7	BGCR6	BGCR5	BGCR4	BGCR3	BGCR2	BGCR1	BGCR0	123
(0xD0)	BGCCR	BGEN	-	BGCC5	BGCC4	BGCC3	BGCC2	BGCC1	BGCC0	123
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	Reserved	-	-	-	-	-	-	-	-	
(0xC5)	Reserved	-	-	-	-	-	-	-	-	
(0xC4)	Reserved	-	-	-	-	-	-	-	-	
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	Reserved	-	-	-	-	-	-	-	-	
(0xC1)	Reserved	-	-	-	-	-	-	-	-	
(0xC0)	CCSR	-	-	-	-	-	-	XOE	ACS	29

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	TWBCSR	TWBCIF	TWBCIE	-	-	-	TWBDT1	TWBDT0	TWBCIP	169
(0xBD)	TWAMR	TWAM[6:0]							-	150
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	147
(0xBB)	TWDR	2-wire Serial Interface Data Register								149
(0xBA)	TWAR	TWA[6:0]							TWGCE	149
(0xB9)	TWSR	TWS[7:3]					-	TWPS1	TWPS0	148
(0xB8)	TWBR	2-wire Serial Interface Bit Rate Register								147
(0xB7)	Reserved	-		-	-	-	-	-	-	
(0xB6)	Reserved	-	-	-	-	-	-	-	-	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	-	-	-	-	-	-	
(0xB3)	Reserved	-	-	-	-	-	-	-	-	
(0xB2)	Reserved	-	-	-	-	-	-	-	-	
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	Reserved	-	-	-	-	-	-	-	-	
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	Reserved	-	-	-	-	-	-	-	-	
(0x8A)	Reserved	-	-	-	-	-	-	-	-	
(0x89)	OCR1AH			Timer/C	- Outpu	pare Regis	High Byte			101
(0x88)	OCR1AL			Timer/C	1- Outpu	pare Regis	ow Byte			101
(0x87)	Reserved	-	-	-	-	-	-	-	-	
(0x86)	Reserved	-	-	-	-	-	-	-	-	
(0x85)	TCNT1H				unter1-	Register				101
(0x84)	TCNT1L				unter1-	R Register				101
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	Reserved	-	-	-	-	-	-	-	-	
(0x81)	TCCR1B	-	-	-	-	CTC1	CS12	CS11	CS10	100
(0x80)	Reserved	-	-	-	-	-	-	-	-	
(0x7F)	Reserved	-	-	-	-	-	-	-	-	
(0x7E)	DIDR0	-	-	-	-	VADC3D	VADC2D	VADC1D	VADCOD	120

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	VADMUX	-	-	-	-	VADMUX3	VADMUX2	VADMUX1	VADMUXO	118
(0x7B)	Reserved	-	-	-	-	-	-	-	-	
(0x7A)	VADCSR	-	-	-	-	VADEN	VADSC	VADCCIF	VADCCIE	118
(0x79)	VADCH	-	-	-	-	VADC Data Register High byte				119
(0x78)	VADCL	VADC Data Register Low byte								119
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	Reserved	-	-	-	-	-	-	-	-	
(0x6F)	TIMSK1	-	-	-	-	-	-	OCIE1A	TOIE1	102
(0x6E)	TIMSK0	-	-	-	-	-	OCIEOB	OCIEOA	TOIE0	93
(0x6D)	Reserved	-	-	-	-	-	-	-	-	
(0x6C)	PCMSK1	PCINT[15:8]								59
(0x6B)	PCMSK0	PCINT[7:0]								59
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	56
(0x68)	PCICR	-	-	-	-	-	-	PCIE1	PCIEO	58
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	FOSCCAL	Fast Oscillator Calibration Register								29
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRRO	-	-	-	-	PRTWI	PRTIM1	PRTIM0	PRVADC	36
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	WUTCSR	WUTIF	WUTIE	WUTCF	WUTR	WUTE	WUTP2	WUTP1	WUTP0	49
(0x61)	Reserved	-	-	-	-	-	-	-	-	
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	47
0x3F (0x5F)	SREG	1	T	H	S	V	N	Z	C	10
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	12
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	12
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0×39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0×38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	183
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0x35 (0x55)	MCUCR	JTD	-	-	PUD	-	-	IVSEL	IVCE	55/73/176
0x34 (0x54)	MCUSR	-	-	-	JTRF	WDRF	BODRF	EXTRF	PORF	46
0×33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	31
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0x31 (0x51)	OCDR	On-Chip Debug Register								176
0×30 (0x50)	Reserved	-	-	-	-	-	-	-	-	
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	Reserved	-	-	-	-	-	-	-	-	
0x2D (0x4D)	Reserved	-	-	-	-	-	-	-	-	
0x2C (0x4C)	Reserved	-	-	-	-	-	-	-	-	
0x2B (0x4B)	GPIOR2	General Purpose I/O Register 2								24
0x2A (0x4A)	GPIOR1	General Purpose I/O Register 1								24
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCROB	Timer/Counter0 Output Compare Register B								92
0x27 (0x47)	OCROA	Timer/Counter0 Output Compare Register A								92
0×26 (0x46)	TCNTO	Timer/Counter0 (8 Bit)								92
0x25 (0x45)	TCCROB	FOCOA	FOCOB	-	-	WGM02	CSO2	CS01	CSOO	91
0x24 (0x44)	TCCROA	COM0A1	СОМОАО	COM0B1	СОмов0	-	-	WGM01	WGM00	88
0×23 (0x43)	GTCCR	TSM	-	-	-	-	-	-	PSRSYNC	105
0x22 (0x42)	EEARH	-	-	-	-	-	-	-	High Byte	19
0x21 (0x41)	EEARL	EEPROM Address Register Low Byte								19
0x20 (0x40)	EEDR	EEPROM Data Register								19
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	19
0x1E (0x3E)	GPIOR0	General Purpose I/O Register 0								24
0x1D (0x3D)	EIMSK	-	-	-	-	INT3	INT2	INT1	INTO	57
0x1C (0x3C)	EIFR	-	-	-	-	INTF3	INTF2	INTF1	INTFO	57

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	-	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0×19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0×18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0×17 (0x37)	Reserved	-	-	-	-	-	-	-	-	
0x16 (0x36)	TIFR1	-	-	-	-	-	-	OCF1A	TOV1	102
0×15 (0x35)	TIFR0	-	-	-	-	-	OCFOB	OCFOA	TOV0	94
0×14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0×13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0×11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	PORTD	-	-	-	-	-	-	PORTD1	PORTD0	74
$0 \times 0 \mathrm{~A}(0 \times 2 \mathrm{~A})$	DDRD	-	-	-	-	-	-	DDD1	DDD0	74
0×09 (0x29)	PIND	-	-	-	-	-	-	PIND1	PIND0	74
0×08 (0x28)	PORTC	-	-	-	-	-	-	-	PORTC0	76
0x07 (0x27)	Reserved	-	-	-	-	-	-	-	-	
0x06 (0x26)	Reserved	-	-	-	-	-	-	-	-	
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	74
0×04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	74
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	74
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTB3	PORTA2	PORTA1	PORTA0	73
0×01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	73
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINAO	73

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O registers within the address range $\$ 00-\$ 1 F$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 F$ only.
4. When using the I/O specific commands IN and OUT, the I/O addresses $\$ 00-\$ 3 F$ must be used. When addressing I/O registers as data space using LD and ST instructions, $\$ 20$ must be added to these addresses. The ATmega406 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60-\$FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
ADIW	Rdl, K	Add Immediate to Word	Rdh:Rdl \leftarrow Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
SBIW	Rdl, K	Subtract Immediate from Word	Rdh:Rdl \leftarrow Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{Rr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$R d \leftarrow R d v K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}-\mathrm{Rd}$	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{~K}$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 x F F-K)$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}$	None	1
MUL	Rd, Rr	Multiply Unsigned	$\mathrm{R} 1: \mathrm{R0} 5 \mathrm{Rdx} \mathrm{Rr}$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$\mathrm{R} 1: \mathrm{R0} 0 \leftarrow \mathrm{Rdx} \times \mathrm{Rr}$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} 5 \mathrm{Rdx} \times \mathrm{Rr}$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
JMP	k	Direct Jump	$\mathrm{PC} \leftarrow \mathrm{k}$	None	3
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
CALL	k	Direct Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{k}$	None	4
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	$\mathrm{Rd}-\mathrm{Rr}$	Z, N, V, C, H	1
CPC	Rd, Rr	Compare with Carry	Rd - Rr - C	Z, N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC $\leftarrow P C+k+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then PC $\leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($C=1$) then $P C \leftarrow P C+k+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if ($\mathrm{N}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if ($\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(\mathrm{N} \oplus \mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if ($\mathrm{H}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if ($\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if ($\mathrm{T}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if ($\mathrm{T}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2

5. Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
BRIE	k	Branch if Interrupt Enabled	if ($\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$\operatorname{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0.6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3 . .0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}$ (b)	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$\mathrm{N} \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$V \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y-1, R d \leftarrow(Y)$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{X}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X , Rr	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1,(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{Y}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(Y+q) \leftarrow R r$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	Z + , Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow R \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	Z $+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(Z+q) \leftarrow \operatorname{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z_{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	$(\mathrm{Z}) \leftarrow \mathrm{R} 1: \mathrm{R} 0$	None	$-$
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1

5. Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

6. Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package $^{(1)}$	Operation Range
1	$4.0-25 \mathrm{~V}$	ATmega406-1AAU ${ }^{(2)}$	48 AA	Industrial $\left(-30^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
48AA	48 -lead, $7 \times 7 \times 1.44 \mathrm{~mm}$ body, 0.5 mm lead pitch, Low Profile Plastic Quad Flat Package (LQFP)

7. Packaging Information

7.1 48AA

8. Errata

8.1 Rev. F

- Voltage-ADC Common Mode Offset
- Voltage Reference Spike

1. Voltage-ADC Common Mode Offset

The cell conversion will have an Offset-error depending on the Common Mode (CM) level. This means that the error of a cell is depending on the voltage of the lower cells. The CM Offset is calibrated away in Atmel production when the cells are balanced. When the cells get un-balanced the CM depending offset will reappear:
a. Cell 1 defines its own CM level, and will never be affected by the CM dependent offset.
b. The CM level for Cell 2 will change if Cell 1 voltage deviates from Cell 2 voltage.
c. The CM level for Cell 3 will change if Cell 1 and/or Cell 2 voltage deviates from the voltage at Cell 3. The worst-case error is when Cell 1 and 2 are balanced while Cell 3 voltage deviates from the voltage at Cell 1 and 2.
d. The CM level for Cell 4 will change if Cell 1, Cell 2 and/or Cell 3 deviate from the voltage at Cell 4. The worst-case error is when Cell 1, Cell 2 and Cell 3 are balanced while Cell 4 voltage deviates from the voltage at Cell 1, 2 and 3.
Figure $9-1$ on page 18, shows the error of Cell2, Cell3 and Cell4 with 5% and 10% unbalanced cells.

Figure 8-1. CM Offset with unbalanced cells.
5% unbalanced cells

10 \% unbalanced cells

Problem Fix/Workaround
Avoid getting unbalanced cells by using the internal cell balancing FETs.
2. Voltage Reference spike

The Voltage Reference, VREF, will spike each time the internal temperature sensor is enabled. The temperature sensor is enabled when the VTEMP is selected in the VADMUX register and the V-ADC is enabled by the VADEN bit.

The spike will be approximately 50 mV and lasts for about 5 ms , and it will affect any ongoing current accumulation in the CC-ADC, as well as V-ADC conversions in the period of the spike. Figure $9-2$ on page 19 illustrates the Voltage Reference spike.

Figure 8-2. Voltage Reference Spike

Problem workaround:

To get correct temperature measurement, the VADSC bit should not be written until the spike has settled (external decoupling capacitor of $1 \mu \mathrm{~F}$).

8.2 Rev. E

- Voltage ADC not functional below $0^{\circ} \mathrm{C}$
- Voltage-ADC Common Mode Offset
- Voltage Reference Spike

1. Voltage-ADC Failing at Low Temperatures

Voltage ADC not functional below $0^{\circ} \mathrm{C}$. The voltage ADC has a very large error below $0^{\circ} \mathrm{C}$, and can not be used

Problem Fix/Workaround
Do not use this revision below 0 celsius.
2. Voltage-ADC Common Mode Offset

The cell conversion will have an Offset-error depending on the Common Mode (CM) level. This means that the error of a cell is depending on the voltage of the lower cells. The CM Offset is calibrated away in Atmel production when the cells are balanced. When the cells get un-balanced the CM depending offset will reappear:
a. Cell 1 defines its own CM level, and will never be affected by the CM dependent offset.
b. The CM level for Cell 2 will change if Cell 1 voltage deviates from Cell 2 voltage.
c. The CM level for Cell 3 will change if Cell 1 and/or Cell 2 voltage deviates from the voltage at Cell 3 . The worst-case error is when Cell 1 and 2 are balanced while Cell 3 voltage deviates from the voltage at Cell 1 and 2.
d. The CM level for Cell 4 will change if Cell 1, Cell 2 and/or Cell 3 deviate from the voltage at Cell 4. The worst-case error is when Cell 1, Cell 2 and Cell 3 are balanced while Cell 4 voltage deviates from the voltage at Cell 1,2 and 3.
Figure $9-1$ on page 18, shows the error of Cell2, Cell3 and Cell4 with 5% and 10% unbalanced cells.

Figure 8-3. $\quad \mathrm{CM}$ Offset with unbalanced cells.

Problem Fix/Workaround

Avoid getting unbalanced cells by using the internal cell balancing FETs.

3. Voltage Reference Spike

The Voltage Reference, VREF, will spike each time a temperature measurement is started with the Voltage-ADC.

Problem Fix/Workaround

An accurate temperature measurement could be obtained by doing 10 temperature conversions immediately after each other. The first 9 results would be inaccurate, but the 10th conversion will be correct.

Figure 9-4 on page 22 illustrates the spike on the Voltage Reference when doing 10 temperature conversions in a row (external decoupling capacitor of $1 \mu \mathrm{~F}$).

Figure 8-4. Voltage Reference Spike

If the CC-ADC is doing current accumulation while the V-ADC is doing temperature measurement, both the Instantaneous and the Accumulated conversion results will be affected. The spike on VREF will be visible on 1 Accumulated Current (CADAC3...0) and 2 Instantaneous Current (CADIC1...0) conversion results.

8.3 Rev. D

- Voltage ADC not functional below $0^{\circ} \mathrm{C}$
- Voltage-ADC Common Mode Offset
- Voltage Reference Spike
- Voltage Regulator Start-up sequence
- $\mathrm{V}_{\text {REF }}$ influenced by MCU state
- EEPROM read from application code does not work in Lock Bit Mode 3

1. Voltage-ADC Failing at Low Temperatures

Voltage ADC not functional below $0^{\circ} \mathrm{C}$. The voltage ADC has a very large error below $0^{\circ} \mathrm{C}$, and can not be used

Problem Fix/Workaround

1. Voltage-ADC Common Mode Offset

The cell conversion will have an Offset-error depending on the Common Mode (CM) level. This means that the error of a cell is depending on the voltage of the lower cells. The CM Offset is calibrated away in Atmel production when the cells are balanced. When the cells get un-balanced the CM depending offset will reappear:
a. Cell 1 defines its own CM level, and will never be affected by the CM dependent offset.
b. The CM level for Cell 2 will change if Cell 1 voltage deviates from Cell 2 voltage.
c. The CM level for Cell 3 will change if Cell 1 and/or Cell 2 voltage deviates from the voltage at Cell 3 . The worst-case error is when Cell 1 and 2 are balanced while Cell 3 voltage deviates from the voltage at Cell 1 and 2.
d. The CM level for Cell 4 will change if Cell 1, Cell 2 and/or Cell 3 deviate from the voltage at Cell 4. The worst-case error is when Cell 1, Cell 2 and Cell 3 are balanced while Cell 4 voltage deviates from the voltage at Cell 1, 2 and 3.
Figure $9-1$ on page 18, shows the error of Cell2, Cell3 and Cell4 with 5% and 10% unbalanced cells.

Figure 8-5. $\quad \mathrm{CM}$ Offset with unbalanced cells.

Problem Fix/Workaround

Avoid getting unbalanced cells by using the internal cell balancing FETs.

3. Voltage Reference Spike

The Voltage Reference, VREF, will spike each time a temperature measurement is started with the Voltage-ADC.

Problem Fix/Workaround

An accurate temperature measurement could be obtained by doing 10 temperature conversions immediately after each other. The first 9 results would be inaccurate, but the 10th conversion will be correct.

Figure 9-6 illustrates the spike on the Voltage Reference when doing 10 temperature conversions in a row (external decoupling capacitor of $1 \mu \mathrm{~F}$).

Figure 8-6. Voltage Reference Spike

If the CC-ADC is doing current accumulation while the V-ADC is doing temperature measurement, both the Instantaneous and the Accumulated conversion results will be affected. The spike on VREF will be visible on 1 Accumulated Current (CADAC3...0) and 2 Instantaneous Current (CADIC1...0) conversion results.

4. Voltage Regulator Start-up sequence

When powering up ATmega406 some precautions are necessary to ensure proper start-up of the Voltage Regulator.

Problem Fix/Workaround

The three steps below are needed to ensure proper start-up of the voltage regulator.
a. Do NOT connect a capacitor larger than 100 nF on the VFET pin. This is to ensure fast rise time on the VFET pin when a supply voltage is connected.
b. During assembly, always connect Cell1 first, then Cell2 and so on until the top cell is connected to PVT. If the cell voltages are about 2 volts or larger, the Voltage Regulator will normally start up properly in Power-off mode (VREG appr. 2.8 volts).
c. After all cells have been assembled as described in step 2, a charger source must be connected at the BATT+ terminal to initialize the chip, see Section 8.3 "Power-on Reset and Charger Connect" on page 38 in the datasheet.
If the Voltage Regulator started up in Power-off during assembly of the cells, the chip will initialize when the charger source makes the voltage at the BATT pin exceed 7-8 Volts.

If the Voltage Regulator did not start up properly, the charger source has one additional requirement to ensure proper start up and initialization. In this case the charger source must ensure that the voltage at the VFET pin increases quickly at least 3 Volts above the voltage at the PVT pin, and that the voltage at the BATT pin exceeds $7-8$ Volts. This will start up and initialize the chip directly.
5. $\quad \mathrm{V}_{\text {REF }}$ influenced by MCU state

The reference voltage at the $\mathrm{V}_{\text {REF }}$ pin depends on the following conditions of the device:
a. Charger Over-current and/or Discharge Over-current Protection active but Short-circuit inactive. This will increase $\mathrm{V}_{\text {REF }}$ voltage with typical 1 mV compared to a condition were all Current Protections are disabled.
b. Short-circuit Protection active. Short-circuit measurements are activated when SCD in BPCR is zero (default) and DFE in FET Control and Status Register (FCSR) is set. This will increase $\mathrm{V}_{\text {REF }}$ voltage with typical 8 mV compared to a condition with shortcircuit measurements inactive.
c. V-ADC conversion of the internal VTEMP voltage. This will increase $\mathrm{V}_{\text {REF }}$ voltage with typical 15 mV compared to a condition with short-circuit measurements inactive.

Problem Fix/Work around

To ensure the highest accuracy, set the Bandgap Calibration Register (BGCC) to get 1.100 V at $\mathrm{V}_{\text {REF }}$ after the chip is configured with the actual Battery Protection settings and the Discharge FET is enabled.
6. EEPROM read from application code does not work in Lock Bit Mode 3

When the Memory Lock Bits LB2 and LB1 are programmed to mode 3, EEPROM read does not work from the application code.
Problem Fix/Work around
Do not set Lock Bit Protection Mode 3 when the application code needs to read from EEPROM.

9. Datasheet Revision History

9.1 Rev 2548E-07/06

1. Updated "Pin Configurations" on page 2.
2. Updated "ADC Noise Reduction Mode" on page 32.
3. Updated "Power-save Mode" on page 32.
4. Updated "Power-down Mode" on page 33.
$5 \quad$ Updated "Power-off Mode" on page 33.
5. Updated "Power Reduction Register" on page 36.
6. Added "Voltage ADC" on page 37 and "Coloumb Counter" on page 38.
7. Updated "Reset Sources" on page 39.
8. Updated "Power-on Reset and Charger Connect" on page 40.
9. Updated "External Reset" on page 41.
10. V_{CC} replaced by VREG in "Brown-out Detection" on page 42.
11. Updated "Alternate Port Functions" on page 66.
12. Updated "Internal Clock Source" on page 103.
13. Updated "External Clock Source" on page 103.
14. Updated Features in "Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC" on page 106.
15. Updated Operation in Section 18. "Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC" on page 106.
16. Updated Features in "Voltage Regulator" on page 114.
17. Updated Operation in "Voltage Regulator" on page 114.
18. Updated Bit description in "VADCL and VADCH - The V-ADC Data Register" on page 119.
19. Updated "Writing to Bandgap Calibration Registers" on page 122.
20. Updated Text in "Register Description for FET Control" on page 134.
21. Added "MCUCR - MCU Control Register" on page 176.

23 Updated "Operating Circuit" on page 223
24. Updated "Electrical Characteristics" on page 225.
25. Added "Typical Characteristics - Preliminary" on page 232.

26 Updated "Register Summary" on page 236.
27. Updated "Errata" on page 17.
28. Updated Table 9-2 on page 48, Table 27-5 on page 189.
29. Updated Figure $8-1$ on page 35 , Figure $9-5$ on page 42, Figure 17-2 on page 104 , Figure $18-2$ on page 107, Figure $18-3$ on page 108, Figure $19-1$ on page 114, Figure 29-1 on page 223.
30. Updated Register Adresses.

ATmega406

9.2 Rev 2548D - 06/05

1. Updated Section 9. "Errata" on page 17.

9.3 Rev 2548C-05/05

1. Updated Section 9. "Errata" on page 17.

9.4 Rev 2548B-04/05

1. Typos updated, bit "PSRASY" removed, CS12:0 renamed CS1[2:0].
2. Removed "BGEN" bit in BGCCR register. The bandgap voltage reference is always enabled in ATmega406 revision E.
3. Updated Figure 2-1 on page 3, Figure 6-1 on page 25, Figure 24-9 on page 137, Figure 21-1 on page 120.
4. Updated Table $7-2$ on page 33 , Table $7-3$ on page 34 , Table $8-1$ on page 38 , Table 26-5 on page 181, Figure 27-1 on page 188.
5. Updated Section 12.3.2 "Alternate Functions of Port A" on page 66 and Section 21. "Battery Protection" on page 118 description.
6. Updated registers "External Interrupt Flag Register - EIFR" on page 55 and "Timer/Counter Control Register B - TCCROB" on page 89.
7. Updated Section 17.1 "Features" on page 103 and Section 17.2 "Operation" on page 103.

Updated Section 19.1 "Features" on page 111.
Updated Section 20.2 "Register Description for Voltage Reference and Temperature Sensor" on page 116.
8. Updated Section 29. "Electrical Characteristics" on page 211.
9. Updated Section 35. "Errata" on page 225.

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$, AVR $^{\circledR}$, and AVR Studio ${ }^{\circledR}$ are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

