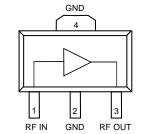
Product Features

- 1800 2500 MHz
- +24 dBm P1dB
- +40 dBm OIP3
- 15 dB Gain
- 5 dB Noise Figure
- Single Positive Supply (+8V)
- Available in a lead-free / green SOT-89 Package Style

Applications


- · Mobile Infrastructure
- W-LAN / ISM
- RFID
- · Defense / Homeland Security
- Fixed Wireless

Product Description

The SCG015 is a high dynamic range driver amplifier in a low-cost surface mount package. The InGaP/GaAs HBT is able to achieve performance over a broad range with +41 dBm OIP3 and +24 dBm of compressed 1dB power and is housed in a lead-free/green/RoHS-compliant SOT-89 SMT package. All devices are 100% RF and DC tested.

The product is targeted for use as a gain block/driver amplifier for various current and next generation wireless technologies such as CDMA, CDMA2000, and W-CDMA, where high linearity and medium power is required. In addition, the SCG015 will work for numerous other applications within the 1800 to 2500 MHz frequency range.

Functional Diagram

Pin No.	Function
1	Input
3	Output/Bias
2, 4	Ground

Specifications (1)

Parameter	 Units	Min	Typ	Max
Operational Bandwidth	MHz	1800		2500
Test Frequency	MHz		2140	
Gain	dB	13.5	15	
Input Return Loss	dB	16	20	
Output Return Loss	dB		10	
Output P1dB	dBm	+23	+24	
Output IP3 (2)	dBm	+37.5	+40	
Noise Figure	dB		5	
Device Voltage	V		5	
Device Current	mA	85	100	135

1. Test conditions unless otherwise noted: 25°C, Vsupply = +8 V, in tuned application circuit with Rbias = 30Ω .

Typical Performance (1)

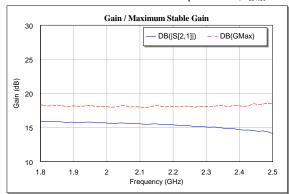
Parameter	Units		Typical	
Frequency	MHz	1900	2140	2450
S21	dB	16.5	15	14.5
S11	dB	-16	-20	-12
S22	dB	-11	-10	-9
Output P1dB	dBm	+24	+24	+23
Output IP3 (2)	dBm	+40	+40	+40
Noise Figure	dB	5	5	5

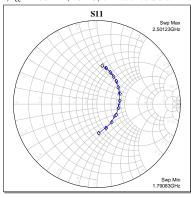
Absolute Maximum Rating

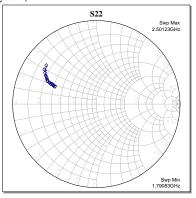
Parameter	
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-55 to +150 °C
Device Current	180 mA
RF Input Power (continuous)	+15 dBm
Junction Temperature	+250 °C

Operation of this device above any of these parameters may cause permanent damage.

Ordering Information


Part No.	Description
SCG015B*	0.2 Watt, High Linearity InGaP HBT Amplifier (lead-tin SOT-89 Pkg)
SCG015B-G	0.2 Watt, High Linearity InGaP HBT Amplifier (lead-free/green/RoHS-compliant SOT-89 Pkg)
SCG015B-PCB1960	1960 MHz Fully Assembled Eval. Board
SCG015B-PCB2140	2140 MHz Fully Assembled Eval. Board


^{*} This package is being phased out in favor of the green package type which is backwards compatible for existing designs. Refer to Product Change Notification WJPCN06MAY05TC1 on the WJ website.

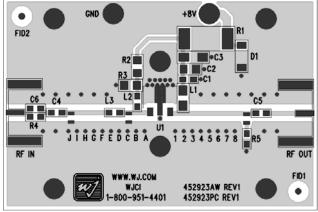

 ³OIP measured with two tones at an output power of +9 dBm/tone separated by 1 MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

Typical Device Data

S-parameters ($V_{device} = +5V$, $I_{cc} = 100$ mA, 25 °C, unmatched 50 ohm system)

Notes:

The gain for the unmatched device in 50 ohm system is shown as the trace in blue color. For a tuned circuit for a particular frequency, it is expected that actual gain will be higher, up to the maximum stable gain. The maximum stable gain is shown in the dashed red line.

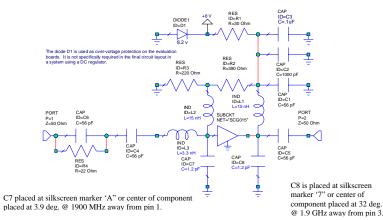

The impedance plots are shown from 1800 - 2500 MHz, with markers placed at 1.8 - 2.5 GHz in 0.05 GHz increments.

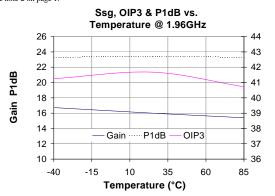
S-Parameters (V_{device} = +5 V, I_{cc} = 100 mA, T = 25° C, unmatched 50 ohm system, calibrated to device leads)

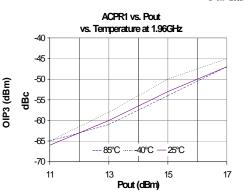
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
1800	-6.70	80.76	15.90	24.47	-28.55	-25.74	-5.34	156.39
1900	-7.55	68.30	15.77	16.51	-28.96	-32.29	-4.96	156.21
2000	-8.60	53.47	15.66	7.76	-30.14	-38.84	-4.56	155.58
2100	-9.85	35.06	15.53	-1.19	-31.49	-45.79	-4.12	155.07
2200	-11.07	10.07	15.40	-10.90	-33.04	-59.63	-3.67	153.49
2300	-11.69	-21.71	15.08	-20.90	-36.28	-78.21	-3.20	150.85
2400	-10.87	-56.13	14.67	-31.83	-40.69	-106.46	-2.80	147.22
2500	-9.15	-86.03	14.14	-43.53	-42.21	163.73	-2.44	142.35

Device S-parameters are available for download off of the website at: http://www.wj.com

Application Circuit PC Board Layout

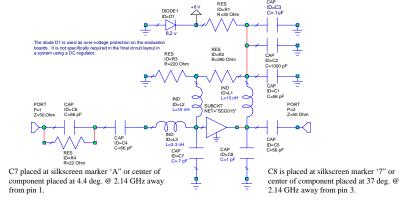

Circuit Board Material: .014" Getek, 4 - layer, 1 oz copper, Microstrip line details: width = .026", spacing = .026". The silk screen markers 'A', 'B', 'C', etc. and '1', '2', '3', etc. are used as placemarkers for the input and output tuning shunt capacitors. The markers and vias are spaced in .050" increments.


1960 MHz Application Circuit (SCG015B-PCB1960)

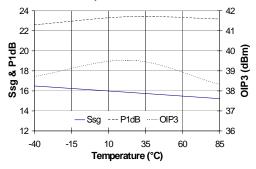

Typical RF Performance at 25°C

-	
Frequency	1960 MHz
S21 – Gain	16.5 dB
S11 – Input Return Loss	-16 dB
S22 – Output Return Loss	-11 dB
Output P1dB	+24 dBm
Output IP3* (+9 dBm / tone, 1 MHz spacing)	+40 dBm
Channel Power (@-45 dBc ACPR, IS-95 9 channels fwd)	+17 dBm
Noise Figure	5 dB
Device Voltage	+5 V
Quiescent Current	100 mA

^{*} Please see note 2 on page 1.



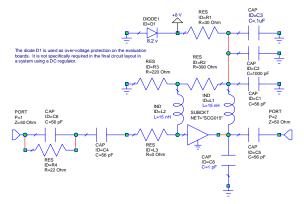
2140 MHz Application Circuit (SCG015B-PCB2140)


Typical RF Performance at 25°C

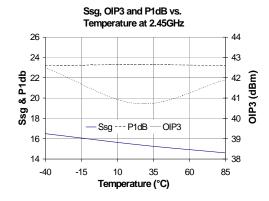
Frequency	2140 MHz
S21 – Gain	15 dB
S11 – Input Return Loss	-20 dB
S22 – Output Return Loss	-10 dB
Output P1dB	+24 dBm
Output IP3* (+9 dBm / tone, 1 MHz spacing)	+40 dBm
Noise Figure	5 dB
Device Voltage	+5 V
Quiescent Current	100 mA

^{*} Please see note 2 on page 1.

Ssg, OIP3, & P1dB vs. Temperature @ 2.14GHz


Specifications and information are subject to change without notice

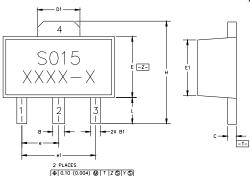
2450 MHz Reference Design


Typical RF Performance at 25°C

Frequency	2450 MHz
S21 – Gain	14.5 dB
S11 – Input Return Loss	-12 dB
S22 – Output Return Loss	-9 dB
Output P1dB	+23 dBm
Output IP3* (+9 dBm / tone, 1 MHz spacing)	+40 dBm
Noise Figure	5 dB
Device Voltage	+5 V
Quiescent Current	100 mA

^{*} Please see note 2 on page 1.

C8 is placed half way between silkscreen marker '3' and '4' or center of component placed at 23 deg. @ 2.45 GHz away from pin 3.



Product Information

SCG015B (SOT-89 Package) Mechanical Information

This package may contain lead-bearing materials. The plating material on the leads is SnPb.

Outline Drawing

SYMBOL	MIN	MAX	1
А	1.40	1.60	
В	(.055) .44	(.063)	1
-	(.017)	(.022)	
B1	(.014)	(.019)	
С	.35 (.014)	.44 (.017)]
D	4.40	4.60	1
	(.173)	(.181)	1
D1	1.62 (.064)	1.83	
Ε	2.29 (.079)	2.60	1
	2.13	(.102)	
E1	(.084)	(.090)	
e	1.50 BSC (.059)		
e1	3.00 BSC (.118)		1
н	3.94	4.25	1
	(.155)	(.167)	4
L	.89 (.035)	1.20	
м	4.04	4.19 (.165)	\Box

W P

NOTES:

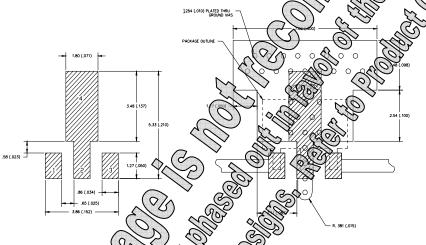
- DIMENSIONS CONFORM WITH JEDEC TO-243C EXCEPT WHERE INDICATED.
- 2. DIMENSIONS ARE EXPRESSED IN MILLIMETERS(INCHES
- 5. DIMENSIONING AND TOLERANCING IAW ANSI Y14.5

Produce Markin

The component with an alphanument of coole top surface of the package

Tape an open specifications for part are located in the website with the "Application Notes" section.

SL Information


autio D sensitive device.

Rating 18

Tue: Sasses at between 500 and 1000V Test: Human Body Model (HBM) Standard JESD22-A114

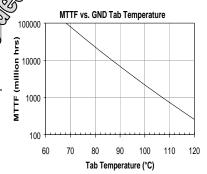
ting: Level 3 at +235 °C convection reflow JEDEC Standard J-STD-020

Land Pattern

Mounting Config. Notes

- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- 4. Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- 5. RF trace width depends upon the PC board material and construction.6. Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.

Thermal Specification

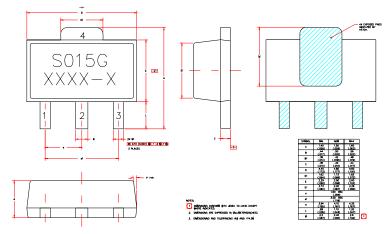

Parameter Operating Cast Conservature 40 to 128 W Thermal Registrator Rth 1 C 128 W Junction Temperature, Tic 1 L Notes: 1. The Conservation resistant of the conservation of the conserv

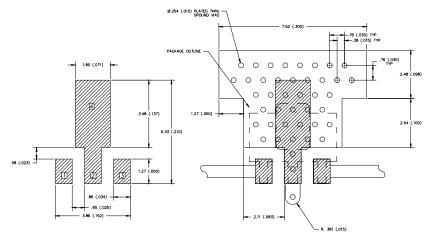
The resistant referenced from the junction case of the temperature of 85° C.

The property of 85° C.

The property of 85° C.

The property of 1 million of of 1 milli




SCG015B-G (Green / Lead-free SOT-89 Package) Mechanical Information

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflow temperature) and leaded (maximum 245°C reflow temperature) soldering processes. The plating material on the leads is NiPdAu.

Outline Drawing

Land Pattern

Product Marking

The component will be marked with an "S015G" designator with an alphanumeric lot code on the top surface of the package.

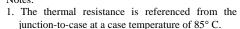
Tape and reel specifications for this part are located on the website in the "Application Notes" section.

ESD / MSL Information

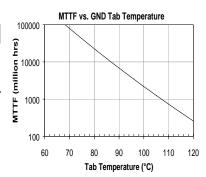
Caution! ESD sensitive device.

ESD Rating: Class 1B

Value: Passes at between 500 and 1000V Test: Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114


MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020

Mounting Config. Notes


- Ground / thermal vias are critical for the proper performance of this device. Vias should use a .35mm (#80 / .0135") diameter drill and have a final plated thru diameter of .25 mm (.010").
- Add as much copper as possible to inner and outer layers near the part to ensure optimal thermal performance.
- Mounting screws can be added near the part to fasten the board to a heatsink. Ensure that the ground / thermal via region contacts the heatsink.
- Do not put solder mask on the backside of the PC board in the region where the board contacts the heatsink.
- RF trace width depends upon the PC board material and construction.
 Use 1 oz. Copper minimum.
- 7. All dimensions are in millimeters (inches). Angles are in degrees.

Thermal Specifications

Parameter	Rating
Operating Case Temperature	-40 to +85 °C
Thermal Resistance, Rth (1)	128 °C / W
Junction Temperature, Tjc (2)	149 °C

 This corresponds to the typical biasing condition of +5V, 100 mA at an 85° C case temperature. A minimum MTTF of 1 million hours is achieved for junction temperatures below 247° C.
 Tjc = Tcase + Rth * Vde * Icc

