BDW74, BDW74A, BDW74B, BDW74C, BDW74D PNP SILICON POWER DARLINGTONS

BOURNS®

- Designed for Complementary Use with BDW73, BDW73A, BDW73B, BDW73C and BDW73D
- 80 W at 25°C Case Temperature
- 8 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BDW74		-45		
Collector-base voltage (I _E = 0)	BDW74A		-60		
	BDW74B	V _{CBO}	-80	V	
	BDW74C		-100	1	
	BDW74D		-120		
	BDW74		-45		
	BDW74A		-60		
Collector-emitter voltage $(I_B = 0)$ (see Note 1)	BDW74B	V _{CEO}	-80	V	
	BDW74C		-100		
	BDW74D		-120		
Emitter-base voltage	V _{EBO}	-5	V		
Continuous collector current	۱ _C	-8	А		
Continuous base current		Ι _Β	-0.3	А	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)	P _{tot}	80	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	2	W		
Unclamped inductive load energy (see Note 4)	½LI _C ²	75	mJ		
Operating junction temperature range	Тj	-65 to +150	°C		
Operating temperature range	T _{stg}	-65 to +150	°C		
Operating free-air temperature range	T _A	-65 to +150	°C		

NOTES: 1. These values apply when the base-emitter diode is open circuited.

2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -5 mA, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = -20 V.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST	CONDITIONS		MIN	ТҮР	MAX	UNIT
					BDW74	-45			
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA	I _B = 0	(see Note 5)	BDW74A BDW74B	-80			V
					BDW74C	-100			v
					BDW740 BDW74D	-120			
		$V_{CE} = -30 V$	I _B = 0		BDW74	-		-0.5	
		$V_{CE} = -30 V$	$I_B = 0$		BDW74A			-0.5	
ICEO	Collector-emitter	$V_{CE} = -40 V$	I _B = 0		BDW74B			-0.5	mA
	cut-off current	$V_{CE} = -50 V$	$I_{B} = 0$		BDW74C			-0.5	
		V _{CE} = -60 V	$I_B = 0$		BDW74D			-0.5	
	Collector cut-off current	V _{CB} = -45 V	$I_E = 0$		BDW74			-0.2	
		V _{CB} = -60 V	$I_E = 0$		BDW74A			-0.2	
		V _{CB} = -80 V	$I_E = 0$		BDW74B			-0.2	
		V _{CB} = -100 V	$I_E = 0$		BDW74C			-0.2	
		V _{CB} = -120 V	$I_E = 0$		BDW74D			-0.2	
ICBO		$V_{CB} = -45 V$	$I_E = 0$	$T_{\rm C} = 150^{\circ}{\rm C}$	BDW74			-5	mA
		V _{CB} = -60 V	$I_E = 0$	T _C = 150°C	BDW74A			-5	
		V _{CB} = -80 V	$I_E = 0$	T _C = 150°C	BDW74B			-5	
		V _{CB} = -100 V	$I_E = 0$	$T_C = 150^{\circ}C$	BDW74C			-5	
		V _{CB} = -120 V	$I_E = 0$	$T_{\rm C} = 150^{\circ}{\rm C}$	BDW74D			-5	
Inne	Emitter cut-off	V	$l_{0} = 0$					-2	mΔ
'EBO	current	VEB0 V	1 <u>C</u> = 0					-2	ШA
hee	Forward current	V _{CE} = -3 V	I _C = -3 A	(see Notes 5 and 6)		750		20000	
"FE	transfer ratio	$V_{CE} = -3 V$	I _C = -8 A			100			
	Base-emitter	Vor3 V	lo = -3 A	-3 A (see Notes 5 and 6)				-2.5	V
• BE(ON)	voltage	·CE - CV	10 - 10 A					2.0	•
V _{CE(sat)}	Collector-emitter	I _B = -12 mA	I _C = -3 A	(see Notes 5 and 6)				-2.5	v
	saturation voltage	I _B = -80 mA	I _C = -8 A	(190 110100 0 4110 0)				-4	•
V_{EC}	Parallel diode forward voltage	I _E = -8 A	$I_{B} = 0$					-3.5	V

NOTES: 5. These parameters must be measured using pulse techniques, $t_0 = 300 \ \mu$ s, duty cycle $\leq 2\%$.

6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

PARAMETER			ТҮР	МАХ	UNIT
R _{θJC}	Junction to case thermal resistance			1.56	°C/W
R _{0JA}	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	МАХ	UNIT
t _{on}	Turn-on time	I _C = -3 A	I _{B(on)} = -12 mA	$I_{B(off)} = 12 \text{ mA}$		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = 3.5 V$	$R_L = 10 \ \Omega$	t_p = 20 μ s, dc \leq 2%		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

BOURNS®

BDW74, BDW74A, BDW74B, BDW74C, BDW74D PNP SILICON POWER DARLINGTONS

TYPICAL CHARACTERISTICS

PRODUCT INFORMATION

AUGUST 1978 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

MAXIMUM SAFE OPERATING REGIONS

PRODUCT INFORMATION

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

C. Typical fixing hole centre stand off height according to package version.

Version 1, 18.0 mm. Version 2, 17.6 mm.

PRODUCT INFORMATION

AUGUST 1978 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.