FEATURES

- Buffered clock and control inputs
- Shift right and parallel load capability
- Fully synchronous data transfers
- J-K(D) inputs to first stage
- Clock enable for hold (do nothing) mode
- Asynchronous Master Reset

DESCRIPTION

The 74F199 is an 8-bit Parallel Access Shift Register and its functional characteristics are indicated in the Logic Diagram and Function Table. The device is useful in a variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers at very high speeds.
The 74F199 operates in two primary modes: shift right ($\mathrm{Q} 0 \rightarrow \mathrm{Q} 1$) and parallel load, which are controlled by the state of the Parallel Enable (PE) input. Serial data enters the first flip-flop (Q0) via the J and $\overline{\mathrm{K}}$ inputs when the $\overline{\mathrm{PE}}$ input is High, and is shifted one bit in the direction $\mathrm{Q} 0 \rightarrow \mathrm{Q} 1 \rightarrow \mathrm{Q} 2$ following each Low-to-High clock transition.
The J and $\overline{\mathrm{K}}$ inputs provide the flexibility of the J-K type input for special applications, and by tying the two together the simple D-type input is made for general applications.

The device appears as eight common clocked D flip-flops when the PE input is Low. After the Low-to-High clock transition, data on the parallel inputs (D0-D7) is transferred to the respective Q0-Q7 outputs.
All parallel and serial data transfers are synchronous, occurring after each Low-to-High clock transition. The 74F199 utilizes edge-triggered, therefore there is no restriction on the activity of the $\mathrm{J}, \mathrm{K}, \mathrm{Dn}$, and PE inputs for logic operation, other than the setup and hold time requirements.
A Low on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously forcing all bit positions to a Low state.

PIN CONFIGURATION

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 199	95 MHz	70 mA

ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V} \pm \mathbf{1 0 \%}, \mathbf{T}_{\mathbf{a m b}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{7 0}{ }^{\circ} \mathbf{C}$
24 -pin plastic slim DIP (300mil)	N74F199N
24-pin plastic SOL	N74F199D

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
D0-D7	Parallel data inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
J, K	J and K inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
PE	Parallel Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\mathrm{CE}}$	Clock Enable input	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
DP	Clock Pulse inputs (Active rising edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{M R}$	Master Reset input (Active Low)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
Q0-Q7	Data outputs	$50 / 33$	$1.0 \mathrm{~mA} / 20 \mathrm{~mA}$

NOTE: One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

LOGIC SYMBOL

IEEE/IEC SYMBOL

SF00154

FUNCTION TABLE

INPUTS							OUTPUTS					OPERATING MODES
MR	CP	CE	PE	J	\bar{K}	Dn	Q0	Q1	...	Q6	Q7	
L	X	X	X	X	X	X	L	L	\ldots	L	L	Reset (clear
H	\uparrow	1	h	h	h	X	H	q0	\ldots	q5	q6	Shift, set First stage
H	\uparrow	1	h	1	1	X	L	q0	\ldots	q5	q6	Shift, reset First stage
H	\uparrow	1	h	h	1	x	q0	q0	\ldots	q5	q6	Shift, toggle First stage
H	\uparrow	1	h	1	h	X	q0	q0	\ldots	q5	q6	Shift, retain First stage
H	\uparrow	1	1	X	X	dn	d0	d1	\ldots	d6	d7	Parallel load
H	\uparrow	h	X	X	X	X	q0	q1	\ldots	q6	q7	Hold (do nothing)

[^0]LOGIC DIAGRAM

TYPICAL TIMING DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{IN}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	40	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
I_{IK}	Input clamp current			-18	mA
I_{OH}	High-level output current			-1	mA
lol	Low-level output current			20	mA
Tamb	Operating free-air temperature range	0		+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			MIN	TYP ${ }^{2}$	MAX					
V_{OH}	High-level output voltage				$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\mathrm{IL}}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$	2.5			V
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{OH}}=$ MAX	$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.4				
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{V}_{\text {IL }}=$ MAX	$\pm 10 \% \mathrm{~V}_{\mathrm{cc}}$		0.35	0.50	V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}, \mathrm{IOL}=\mathrm{MAX}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.2	V		
I	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=7.0 \mathrm{~V}$				100	$\mu \mathrm{A}$		
$\mathrm{IIH}^{\text {H }}$	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
$\mathrm{I}_{1 /}$	Low-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=0.5 \mathrm{~V}$				-0.6	mA		
los	Short-circuit output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$		-60		-150	mA		
ICC	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$			65	90	mA		
		$\mathrm{I}_{\text {CCL }}$				75	105			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	80	95		70		MHz
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay CP to Qn	Waveform 1	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 13.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay MR to Qn	Waveform 2	5.5	8.0	10.5	5.0	12.0	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{S}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low Dn to CP	Waveform 3	$\begin{aligned} & 0.0 \\ & 1.5 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 2.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low Dn to CP	Waveform 3	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$			2.5 5.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low J, K to CP	Waveform 3	$\begin{aligned} & 0.0 \\ & 2.5 \end{aligned}$			0.0 3.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low J, K to CP	Waveform 3	$\begin{aligned} & 0.0 \\ & 3.5 \end{aligned}$			0.0 4.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CE to CP	Waveform 3	$\begin{aligned} & 0.0 \\ & 2.5 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 3.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low CE to CP	Waveform 3	$\begin{aligned} & 0.0 \\ & 4.5 \end{aligned}$			0.0 5.5		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low PE to CP	Waveform 3	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$			$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low PE to CP	Waveform 3	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$t_{w}(\mathrm{H})$	CP pulse width, High	Waveform 1	4.5			5.5		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	MR pulse width, Low	Waveform 2	4.0			4.5		ns
$\mathrm{t}_{\text {rec }}$	Recovery time MR to CP	Waveform 2	5.5			6.5		ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay, Clock Input to Output, Clock Widths, and Maximum Clock Frequency

Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Waveform 3. Setup Time and Hold Time

TEST CIRCUIT AND WAVEFORMS

DEFINITIONS:
$R_{L}=$ Load resistor;
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generators.

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

[^0]: $\mathrm{H}=$ High voltage level
 h $\quad=$ High voltage level one setup time prior to the Low-to-High clock transition
 L = Low voltage level
 I = Low voltage level one setup time prior t the Low-to-High clock transition
 $X=$ Don't care
 $\uparrow \quad=$ Low-to-High clock transition
 $\mathrm{dn}(\mathrm{qn})=$ Lower case letters indicate the state of the referenced input (or output) one setup time prior to the Low-to-High clock transition

