64-BIT AC-PDP DRIVER

DESCRIPTION

The μ PD16344 is a row driver for an AC plasma display panel (PDP) using high breakdown voltage CMOS process. The μ PD16344 consists of a 64-bit bi-directional shift register, latch circuit and high breakdown voltage CMOS driver section. The logic section operates on a $5-\mathrm{V}$ power supply so that it can be connected directly to a gate array and microcomputer (CMOS level input). The driver section provides high breakdown voltage output of 120 V and $+400 \mathrm{~mA},-150 \mathrm{~mA}$. Both the logic and driver sections are constructed by CMOS, witch allows operation with low power consumption.

FEATURES

- High voltage full CMOS process
- High breakdown voltage, high current output (Maximum rating: $120 \mathrm{~V},+400 \mathrm{~mA},-150 \mathrm{~mA}$)
- 64-bit bi-directional shift register on chip
- Data control by transfer clock (external) and latch
- High-speed data transfer capability (fclk $=12 \mathrm{MHz}$ MAX.: when cascaded)
- Wider operating ambient temperature $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

ORDERING INFORMATION

Part number	Package
μ PD16344GF-3BA	$100-$ pin plastic QFP (14×20)

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

1. BLOCK DIAGRAM (Shift register: 64-bit)

Remark/xxx indicates active low signal.

2. PIN CONFIGURATION (Top view)

μ PD16344GF-3BA

Caution Be sure to use all of the Vdd1, Vdd2, Vss1, and Vss2 pins. Use Vss1, Vss2, and Vsub at the same potential.

3. PIN FUNCTIONS

Pin Symbol	Pin Name	Pin Number	Description
HBLK	High blanking input	45	All output $=\mathrm{H}$, when $\mathrm{HBLK}=\mathrm{H}$
LE1, LE2	Latch strobe input	35, 39	$\mathrm{L}=$ Through, $\mathrm{H}=$ Data preservation LE1: Latch of odd register LE2: Latch of even register
A	Left data input	42	When $\mathrm{R}, \mathrm{L}=\mathrm{L}$: A: Input B : Output
B	Right data input	40	When R,/L = H: A: Output B: Input
CLK	Clock input	38	Shift performed on a rising edge
/OE	Enable input	46	$\mathrm{L}=$ All output, high-impedance
/LBLK	Low blanking input	44	All output $=\mathrm{L}$, when $/ \mathrm{LBLK}=\mathrm{L}$
R,/L	Shift control input	36	$L=$ Left shift mode $A \rightarrow O_{1} \ldots O_{64} \rightarrow B$ $H=$ Right shift mode $B \rightarrow O_{64} \ldots O_{1} \rightarrow A$
/CLR	Register clear	43	$L=$ All shift register data cleared (L level clear)
O_{1} to O_{64}	High withstand voltage output	$\begin{gathered} 1 \text { to } 30,51 \text { to } 82, \\ 99,100, \\ \hline \end{gathered}$	$110 \mathrm{~V},+300 \mathrm{~mA},-100 \mathrm{~mA}$
DA1	Diode source 1	49, 84, 85	Diode source pin for O_{1} to O_{32}
DK1	Diode sink 1	50, 83	Diode sink pin for O_{1} to O_{32}
DA2	Diode source 2	32, 96, 97	Diode source pin for O_{33} to O_{64}
DK2	Diode sink 2	31, 98	Diode sink pin for O_{33} to O_{64}
VDD1	Logic section power supply	41,90	$5 \mathrm{~V} \pm 10$ \%
VDD2	Driver section power supply	34, 47, 87, 94	30 to 110 V
Vss1	Logic ground	37, 91	Connected to system GND
Vss2	Driver ground	33, 48, 86, 95	Connected to system GND
V Sub	Substrate ground	88, 89, 92, 93	Connected to system GND

4. TRUTH TABLE

Shift Register Section

Input		Output		/CLR	Shift Register
R,/L	CLK	A	B		
L	\uparrow	Input	Output ${ }^{\text {Note1 }}$	H	Left shift operation performed
L	H or L		Output	H	Hold
H	\uparrow	Output ${ }^{\text {Note2 }}$	Input	H	Right shift operation performed
H	H or L	Output		H	Hold
\times	\times	\times	\times	L	All registers = L

Notes 1. On the rising edge of the clock, the data of S_{63} is shifted to S_{64}, and data is output from B.
2. On the rising edge of the clock, the data of S_{2} is shifted to S_{1}, and data is output from A.

Latch Section

LE	Operation $\left(L_{n}\right)$
H	Holds and outputs data immediately before LE becomes H.
L	Outputs shift register data.

Driver Section

A (B)	HBLK	/LBLK	/OE	CLR	Driver Output State
\times	H	H	H	\times	All driver output: H
\times	\times	L	H	\times	All driver output: L $^{\text {Note }}$
\times	\times	\times	L	\times	All driver output: High impedance
L	L	H	H	H	H
H	L	H	H	H	L
\times	L	H	H	L	H

Note The capacity of the Nch transistor decreases to about $1 / 4$ of the normal state for a certain period of time at the falling edge of /LBLK. Refer to Switching Characteristics Waveform on 8. ELECTRICAL SPECIFICATIONS.
Remark \times : H or L, H: High level, L: Low level

5. TIMING CHART (R,/L ="L", when left shift mode)

Remark In the parentheses: when $\mathrm{R}, \mathrm{L}=\mathrm{H}$

6. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V} \mathrm{ss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Ratings	Unit
Logic section supply voltage	VDD1	-0.5 to +6.0	V
Driver section supply voltage	VDD2	-0.5 to +120	V
Logic section input voltage	V	-0.5 to $\mathrm{V}_{\text {DD } 1}+0.5$	V
Driver section output current	lo	$+400,-150$ Note	mA
Diode peak forward current	IFM	± 450	mA
Allowed package loss	PD	1000	mW
Operating ambient temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Note Simultaneous operation can be performed with up to 4 outputs.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operation Ranges ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Logic section supply voltage	VDD1		4.5	5.0	5.5	V
Driver section supply voltage	VDD2		30		110	V
High-level input voltage	V_{IH}		$0.7 \mathrm{VDD1}$		VDD1	V
Low-level input voltage	VIL		0		$0.2 \mathrm{VdD1}$	V
Driver output current	Іон				-100	mA
	loL1				+300	mA
	IoL2	Low capacity ${ }^{\text {Note }}$			(+75)	mA
Diode forward current	IFOH				-400	mA
	Ifol				+400	mA

Note The period of 560 ns MAX. from the falling edge of /LBLK. The value enclosed in parentheses is a reference value.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=110 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level output voltage	VoH1	Logic, $\mathrm{loH}=-1.0 \mathrm{~mA}$	$0.9 \mathrm{VDD1}$		VDD1	V
Low-level output voltage	VoL1	Logic, lol $=1.0 \mathrm{~mA}$	0		$0.1 \mathrm{VDD1}$	V
High-level output voltage	Vон2	O_{1} to $\mathrm{O}_{64}, \quad \mathrm{lor}=-60 \mathrm{~mA}$	90	100		V
Low-level output voltage	Vol21	O_{1} to $\mathrm{O}_{64}, \mathrm{lol}=200 \mathrm{~mA}$		4	8	V
	Vol22	Low capacity ${ }^{\text {Note1 }}$, lot $=50 \mathrm{~mA}$		(4)	(8)	V
High-level output voltage	Vонd	$\begin{aligned} & \text { O1 to } \mathrm{O}_{64}, \text { loн }=-400 \mathrm{~mA}^{\text {Note2 }} \text {, } \\ & \text { DA }=110 \mathrm{~V} \end{aligned}$	103	105		V
Low-level output voltage	Vold	$\begin{aligned} & \mathrm{O}_{1} \text { to } \mathrm{O}_{64}, \mathrm{loL}=400 \mathrm{~mA}^{\text {Note2 }} \text {, } \\ & \text { DK }=0 \mathrm{~V} \end{aligned}$		5	7	V
Input leakage current	IIL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {DD1 }}$ or $\mathrm{V}_{\text {SS } 1}$			± 1.0	$\mu \mathrm{A}$
High-level input voltage	V_{IH}		$0.7 \mathrm{~V}_{\text {DD1 }}$			V
Low-level input voltage	VIL				$0.2 \mathrm{VDD1}$	V
Static current consumption	IdD11	Logic, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			500	$\mu \mathrm{A}$
	IDD11	Logic, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			300	$\mu \mathrm{A}$
	IDD21	Driver, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			1000	$\mu \mathrm{A}$
	IDD21	Driver, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$

Notes 1. The period of 560 ns MAX. from the falling edge of /LBLK. The value enclosed in parentheses is a reference value.
2. The current characteristic of the diode built into the output section is indicated.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD} 1}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=110 \mathrm{~V}$, Logic $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, Driver $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Propagation delay time	tPHL1	CLK \rightarrow A, B			70	ns
	tplh1				70	ns
	tPHL2	$/ \mathrm{CLR} \rightarrow \mathrm{A}, \mathrm{B}$			70	ns
	tPHL3	$\mathrm{CLK} \rightarrow \mathrm{O}_{1}$ to O_{64}			160	ns
	tPLH3				160	ns
	tPHL4	$\mathrm{LE} \rightarrow \mathrm{O}_{1}$ to O_{64}			160	ns
	tpLH4				160	ns
	tPHL5	$\mathrm{HBLK} \rightarrow \mathrm{O}_{1}$ to O_{64}			160	ns
	tPLH5				160	ns
	tPHL6	$/ \mathrm{LBLK} \rightarrow \mathrm{O}_{1}$ to O_{64}			200	ns
	tPLH6				200	ns
	tPHz	$\begin{aligned} & / \mathrm{OE} \rightarrow \mathrm{O}_{1} \text { to } \mathrm{O}_{64} \\ & \mathrm{RL}=20 \mathrm{k} \Omega \end{aligned}$			300	ns
	tpzH				160	ns
	tPzL				160	ns
	tpLz				300	ns
Output rising time	ttL	O_{1} to O_{64}			150	ns
Output falling time	tTHL1	O_{1} to O_{64}			100	ns
	tTHL2	Low capacity ${ }^{\text {Note1 }}$			400	ns
Output Nch low-driver capability period	tıA	from the falling edge of /LBLK		$(280){ }^{\text {Note2 }}$	$(560)^{\text {Note2 }}$	ns
Clock frequency	fclk	Data intake, Duty = 50\%			15	MHz
		Cascade connection, Duty $=50 \%$			12	MHz
Input capacity	C_{1}				15	pF

Notes 1. The period of 560 ns MAX. from the falling edge of /LBLK.
2. The value enclosed in parentheses is a reference value.

Timing Requirements ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD1}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWclk(H), PWclk(L)		30			ns
Latch enable pulse width	PWLE		30			ns
Blank pulse width	PWhblk		300			ns
	PW/Lblk		600			ns
Clear pulse width	PW/CLR		30			ns
Data setup time	tsetup		10			ns
Data hold time	thold		10			ns
Clock latch time	tCLK-LE	CLK $\uparrow \rightarrow$ LE \uparrow	30			ns

Switching Characteristics Waveform (1/3)

Switching Characteristics Waveform (2/3)

Switching Characteristics Waveform (3/3)

8. PACKAGE DRAWING

100 PIN PLASTIC QFP (14x20)

NOTE

Each lead centerline is located within 0.15 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	23.2 ± 0.2
B	20.0 ± 0.2
C	14.0 ± 0.2
D	17.2 ± 0.2
F	0.8
G	0.6
H	0.32 ± 0.08
I	0.15
J	$0.65($ T.P. $)$
K	1.6 ± 0.2
L	0.8 ± 0.2
M	$0.17{ }_{-0}^{+0.08}$
N	0.10
P	2.7
Q	0.125 ± 0.075
R	$5^{\circ} \pm 5^{\circ}$
S	2.825 ± 0.175
	S100GF-65-3BA-4

9. SOLDERING CONDITIONS

Solder the product under the following recommended conditions.
For details of the recommended soldering conditions, refer to information Document Semiconductor Device

Mounting Technology Manual (C10535E).

For soldering methods and soldering conditions other than those recommended, please contact one of our sales representatives.

Surface Mount Type
μ PD16344GF-3BA: 100-pin plastic QFP(14 x 20)

Soldering Method	Soldering Condition	Symbol of Recommended Soldering Condition
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds MAX. $\left(210^{\circ} \mathrm{C}\right.$ MIN.), Number of times: 3 MAX., Max day: 7 days (need 10 hours with $125^{\circ} \mathrm{C}$ prebeak after limited day) <Precaution> Products other than in hear-resistant trays (such as those packaged in a magazine, taping, or non-thermal-resistant tray) cannot be baked in their package.	IR35-207-3
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds MAX. ($200^{\circ} \mathrm{C}$ MIN.), Number of times: 3 MAX., Max day: 7 days (need 10 hours with $125^{\circ} \mathrm{C}$ prebeak after limited day) <Precaution> Products other than in hear-resistant trays (such as those packaged in a magazine, taping, or non-thermal-resistant tray) cannot be baked in their package.	VP15-207-3
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ MAX., Time: 3seconds MAX. (per side of device)	-

Caution Do not use two or more soldering methods in combination (except the partial heating method).

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
 Quality Grades to NEC's Semiconductor Devices (C11531E)

- The information in this document is current as of November, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

